INVESTIGATION OF CHLOROPHYLL PIGMENT CONCENTRATION AND SEA SURFACE TEMPERATURE OF THE LAKE VAN

Authors

  • Mehmet Tahir Kavak University of Dicle

DOI:

https://doi.org/10.46291/ICONTECHvol4iss2pp69-84

Keywords:

Chlorophyll-a, Sea Surface Temperature, Landsat OLI, coccolithophore, Remote Sensing

Abstract

Current study is investigated chlorophyll-a (Chl-a) pigment concentration and its relationship with Sea Surface Temperature (SST) using cloud-free high resolution 59 Landsat-The Operational Land Imager (OLI) images from May 2013 to September 2018 covering Lake Van of Turkey. In addition, the concentrations of coccolithophore which is a kind of phytoplankton was also studied using the same method.

The fact that Van Lake is extremely rich in terms of aquatic life has led to the investigation of the factors affecting the marine habitat. Therefore, SST, Chl-a concentrations, as well as the relationship between them and coccolithophore concentrations were investigated to evaluate marine life and ecosystem in the Lake. Satellite-generated data can provide information about the marine life in a particular area worldwide. Coccolithophore, SST and Chl-a were obtained from high resolution 59 Landsat OLI using SeaDAS software. Aforementioned parameters were extracted from images using SeaDAS's OCSSW L2GEN module and then output processed by QGIS (Open Source Geographic Information System) to conduct statistical calculation. Negative correlation coefficients of 74% and 73.7% were found for 2014 and 2017, respectively, and these were not statistically significant. Although the information does not give meaningful results, it may be useful in future studies about the effects of global temperature changes and the marine life for particular region.

References

(QGIS), O. S. G. I. S. (2009, 2019). QGIS 3.6 NOOSA. Retrieved from https://qgis.org/en/site/index.html

Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., . . . Winder, M. (2009). Lakes as sentinels of climate change. Limnology and oceanography, 54(6), 2283-2297.

Britannica, E. (2019). Lake Van. Retrieved from https://www.britannica.com/place/Lake-Van

Carpenter, S. R., Benson, B. J., Biggs, R., Chipman, J. W., Foley, J. A., Golding, S. A., . . . Kamarainen, A. M. J. A. B. (2007). Understanding regional change: a comparison of two lake districts. 57(4), 323-335.

Çiftçi, Y., Isık, M., Alkevli, T., & Yesilova, C. J. G. E. J. (2008). Environmental geology of lake Van basin. 32, 45-77.

Degens, E., Wong, H., Kempe, S., & Kurtman, F. J. G. R. (1984). A geological study of Lake Van, eastern Turkey. 73(2), 701-734.

Degens, E. T., & Kurtman, F. (1978). The geology of lake Van: Mineral Research and Exploration Institute of Turkey.

GCOS-154, S. O. R. f. S.-b. D. P. f. C. (2011). Supplemental details to the satellite-based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update). Geneva Retrieved from https://library.wmo.int/doc_num.php?explnum_id=3710

Hassol, S., Assessment, A. C. I., Monitoring, A., Programme, A., Flora, P. f. t. C. o. A., Fauna, & Committee, I. A. S. (2004). Impacts of a Warming Arctic - Arctic Climate Impact Assessment: Cambridge University Press.

Kadioğlu, M., Şen, Z., & Batur, E. (1997). The greatest soda-water lake in the world and how it is influenced by climatic change. Paper presented at the Annales Geophysicae.

Kavak, M. T., & Karadogan, S. (2012). The relationship between sea surface temperature and chlorophyll concentration of phytoplanktons in the Black Sea using remote sensing techniques. J Environ Biol, 33(2 Suppl), 493-498.

Landsat-OLI, N. (2019). Landsat Science. Retrieved from https://landsat.gsfc.nasa.gov/operational-land-imager-oli/

Moore, T. S., Dowell, M. D., & Franz, B. A. (2012). Detection of coccolithophore blooms in ocean color satellite imagery: A generalized approach for use with multiple sensors. Remote Sensing of Environment, 117, 249-263. doi:https://doi.org/10.1016/j.rse.2011.10.001

NASA Goddard Space Flight Center, O. B. P. G. (2014).

Pham, S. V., Leavitt, P. R., McGowan, S., Peres-Neto, P. J. L., & Oceanography. (2008). Spatial variability of climate and land‐use effects on lakes of the northern Great Plains. 53(2), 728-742.

Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., . . . Tryjanowski, P. (2007). Assessment of observed changes and responses in natural and managed systems.

Sari, M., Polat, I., & Saydam, A. J. D. A. S. Ü. S. (2000). NOAA AVHRR Uydu Göruntuleri Ile Van Gölu Yuzey Sicakliğinin Izlenmesi, 4. 825-842.

Tomonaga, Y., Brennwald, M. S., & Kipfer, R. (2011). Spatial distribution and flux of terrigenic He dissolved in the sediment pore water of Lake Van (Turkey). Geochimica Et Cosmochimica Acta, 75(10), 2848-2864. doi:10.1016/j.gca.2011.02.038

Williamson, C. E., Dodds, W., Kratz, T. K., Palmer, M. A. J. F. i. E., & Environment, t. (2008). Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. 6(5), 247-254.

Wong, H., & Degens, E. J. D. v. K. M. Y. (1978). The bathymetry of Lake Van, eastern Turkey. 169, 6-11.

Yıldız, M., & Deniz, O. J. F. U. J. o. S. S. (2005

Published

2020-09-16

How to Cite

Kavak, M. T. (2020). INVESTIGATION OF CHLOROPHYLL PIGMENT CONCENTRATION AND SEA SURFACE TEMPERATURE OF THE LAKE VAN. ICONTECH INTERNATIONAL JOURNAL, 4(2), 69–84. https://doi.org/10.46291/ICONTECHvol4iss2pp69-84

Issue

Section

Articles