Microscopic and Physiological Analysis of Somatic Embryos Under in Vitro Culture in Triticale
DOI:
https://doi.org/10.46291/ICONTECHvol6iss1pp73-80Keywords:
Somatic embryos, triticale, tissue culture, enzyme activities, in vitro assayAbstract
Somatic embryogenesis is a developmental process during which plant somatic cells, under in vitro conditions, produce embryogenic cells that develop into somatic embryos. Somatic embryogenesis is an efficient method clonal propagation in vitro of plants. Mature embryos were used as explant source for embryogenic callus formation and the callus produced compact, healthy and most mature embryos were induced embryogenic callus. Somatic embryos showed a similar morphologically to their non-somatic counterparts in their development. In a comparative study, total protein, DNSA and activities of some antioxidant enzymes including H2O2, MDA of somatic embryos of three triticale cultivar ‘Tatlıcak, Alper Bey and Mikham’ at embryogenic callus stages were analyzed. However; somatic embryos displayed the highest level of DNSA, MDA, H2O2 and total protein in all tested cultivars. Our results showed that the triticale somatic embryo maturation process was complete within two years in vitro conditions.
References
REFERENCES
Adero, M.O. Syombua, E.D. Asande, L.K. Amugune, N.O. Mulanda, E.S. Macharia, G. 2019. Somatic embryogenesis and regeneration of Kenyan wheat (Triticum aestivum L.) genotypes from mature embryo explants. African Journal of Biotechnology, 18(27): 689-694. https://academicjournals.org/journal/AJB/article-abstract/810258C61566
Bartos, P.M.C. Gomes, H.T. Gomes, S.M. Vasconcelos Filho, S.C. Teixeira, J.B. Scherwinski-Pereira, J.E. 2018. Histology of somatic embryogenesis in Coffea arabica L. Biologia, 73(12): 1255-1265. https://link.springer.com/article/10.2478/s11756-018-0131-5
Bezirganoglu I. 2017. Response of five triticale genotypes to salt stress in in vitro culture. Turkish Journal of Agriculture Forestry, 41(5):372–380. https://dergipark.org.tr/tr/download/article-file/412057
Cangahuala-Inocente, G.C. Silveira, V. Caprestano, C.A. Floh, E.I.S. Guerra, M.P. 2014. Dynamics of physiological and biochemical changes during somatic embryogenesis of Acca sellowiana. Vitro Cell Dev Biol, 50:166–175. https://link.springer.com/article/10.1007/s11627-013-9563-3
Cangahuala-Inocente, G.C. do Amaral, F.P. Faleiro, A.C. Huergo, L.F. Arisi, A.C.M. 2013. Identification of six differentially accumulated proteins of Zea mays seedlings (DKB240 variety) inoculated with Azospirillum brasilense strain FP2. European Journal of Soil Biology, 58:45-50. https://www.sciencedirect.com/science/article/abs/pii/S1164556313000605
Cui, K.R. Xing, G.S. Liu, X.M. Xing, G.M. Wang, Y.F. 1999. Effect of the hydrogen peroxide on somatic embryogenesis of Lycium barbatum L. Plant Science,146:9–16. https://www.sciencedirect.com/science/article/abs/pii/S0168945299000874
Egertsdotter, U. 2019. Plant physiological and genetical aspects of the somatic embryogenesis process in conifers. Scandinavian Journal of Forest Research, 34(5), 360-369. https://www.tandfonline.com/doi/full/10.1080/02827581.2018.1441433
Erdal, S. 2012. Androsterone-induced molecular and physiological changes in maize seedlings in response to chilling stress. Plant Physiol Biochem, 57:1–7. https://www.sciencedirect.com/science/article/abs/pii/S0981942812000988
Guo, B. He, W. Zhao, Y. Wu, Y. Fu, Y. Guo, J. Wei, Y. 2017. Changes in endogenous hormones and H2O2 burst during shoot organogenesis in TDZ-treated Saussurea involucrate explants. Plant Cell Tiss Org Cult, 128:1–8. https://link.springer.com/article/10.1007/s11240-016-1069-3
Heath, R.L. Packer, L. 1968. Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 25:189–198. https://www.sciencedirect.com/science/article/abs/pii/0003986168906541
Iraqi, D. Tremblay, F.M. 2001. Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Biol, 52:2301-2311. https://academic.oup.com/jxb/article/52/365/2301/543839
Jaleel, C.A. Sankar, B. Sridharan, R. Panneerselvam, R. 2007. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk J Biol, 32:79–83. https://www.semanticscholar.org/paper/Soil-Salinity-Alters-Growth%2C-Chlorophyll-Content%2C-Jaleel-Sankar/654df82d1a60fa4486f4da3d6b93ca0ca7d80fdb
Jiménez, V.M. 2001. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Brasi de Fisio Veg, 13:196–223. https://www.scielo.br/j/rbfv/a/Kvmp4v5FQ8dYQpL7H6QhzTg/?lang=en
Kaur, A. Reddy, M.S. Kumar, A. 2018. Direct somatic embryogenesis of potato [Solanum tuberosum (L.)] cultivar “Kufri Chipsona 2”. Plant Cell Tissue Organ Cult., 134: 457–466. https://link.springer.com/article/10.1007/s11240-018-1435-4
Kasote, D.M. Katyare, S.S. Hegde, M.V. Bae, H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International journal of biological sciences, 11(8):982. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495415/
Korasick, D.A. Enders, T.A. Strader, L.C. 2013. Auxin biosynthesis and storage form. J. Exp. Botany, 64:2541–2555. https://pubmed.ncbi.nlm.nih.gov/23580748/
Krishnan, S.R.S. and Siril, E.A. 2017. Auxin and nutritional stress coupled somatic embryogenesis in Oldenlandia umbellata L. Physiol. Mol. Biol. Plants, 23:471–475. https://pubmed.ncbi.nlm.nih.gov/28461734/
Liu, C.Q. 2009. The study of somatic embryogenesis induction and Histocytology in Hippophae rhamnoides subsp. sinensis Rousi and Sequoia sempervirens (Lamb.) Endl. Beijing: China Environmental Science Press, , pp, 93–136.
Martin, C. Guerra, G. Hita, M. Dorado, V. 2000. Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant Sci, 154:143–151. https://pubmed.ncbi.nlm.nih.gov/10729613/
Morel, A. Teyssier, C. Trontin, J.F. Eliášová, K. Pešek, B. Beaufour, M. Lelu‐Walter, M. A. (2014). Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. Physiologia plantarum, 152(1): 184-201. https://pubmed.ncbi.nlm.nih.gov/24460664/
Mozgová, I. Muñoz-Viana, R. Hennig, L. 2017. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genetic, 13:e1006562. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006562
Nic-Can, G.I. Loyola-Vargas, V.M. (2016). The role of the auxins during somatic embryogenesis. In Somatic embryogenesis: fundamental aspects and applications. Cham:Springer, pp. 171-182.
Nowak, K. Gaj, M.D. 2016. Transcription factors in the regulation of somatic embryogenesis. Somatic embryogenesis: fundamental aspects and applications, 53-79.
Orłowska, R. 2021. Barley somatic embryogenesis-an attempt to modify variation induced in tissue culture. Journal of Biological Research-Thessaloniki, 28(1):1-12. https://jbiolres.biomedcentral.com/articles/10.1186/s40709-021-00138-5
Szalai, G., Horgosi, S. Soos, V. Majlath, I. Balazs, E. Janda, T. 2011. Salicylic acid treatment of pea seeds induces its de novo synthesis. J. Plant Physiol., 168:213–219. https://pubmed.ncbi.nlm.nih.gov/20933297/
Velikova, V. Yordanov, I. Edreva, A. 2000. Oxidative stress and some antioxidantsystems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci, 151:59–66. https://www.sciencedirect.com/science/article/pii/S0168945299001971
Wright, T.R. Shan, G. Walsh, T.A. Lira, J.M. Cui, C. Song, P. Zhang, Z. 2010. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proceedings of the National Academy of Sciences, 107(47):20240-20245. https://www.pnas.org/content/107/47/20240
Wu, G. Wei, X. Wang, X. Wei, Y. 2021. Changes in biochemistry and histochemical characteristics during somatic embryogenesis in Ormosia henryi Prain. Plant Cell, Tissue and Organ Culture (PCTOC), 144(3): 505-517. https://www.biorxiv.org/content/10.1101/2020.09.21.307009v1
Yazıcılar, B. Böke, F. Alaylı, A. Nadaroglu, H. Gedikli, S. Bezirganoglu, I. 2021. In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. Plant Cell Reports, 40(1):29-42. https://link.springer.com/article/10.1007/s00299-020-02613-0
Zimmerman, J.L. 1993. Somatic embryogenesis: a model for early development in higher plants. The plant cell, 5(10), 1411. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160372/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 ICONTECH INTERNATIONAL JOURNAL
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.