Ram Makinesinde İnce Tabaka Kurutma Modelleme İçin Yeni Bir Ampirik Model

Yazarlar

  • Ahmet Erhan Akan Machinery and Metal Technology, Çorlu Vocational School, Tekirdağ Namık Kemal University, Çorlu, Tekirdağ, Türkiye

DOI:

https://doi.org/10.5281/zenodo.7489810

Anahtar Kelimeler:

Kurutma- Ram makinesi- Ramöz- Teorik modelleme- İnce tabaka modelleme

Özet

Bu çalışma, dokuma veya örme kumaşların kurutulmasında kullanılan bir kızgın yağ ısıtmalı ram makinenin kurutma davranışını ve geliştirilen yeni bir ampirik model ile modellemesini içermektedir. Geliştirilen yeni modelin uygunluğu teorik olarak I. Dereceden Kinetik model ve literatürden seçilen 5 adet ince tabaka kurutma modeli ile karşılaştırılmıştır. Model ve deneysel veriler arasındaki istatistiksel analizler MATLAB 2019a programı kullanılarak değerlendirilmiştir. Regresyon analizinde R2 değerleri ana kriter olarak alınmıştır. Ayrıca model uygunluğunun belirlenmesinde SEE ve RMSE verileri değerlendirilmiştir. Elde edilen sonuçlara göre ram makinesi kuruma davranışının I. Dereceden Kinetik model ile modellenmesi durumunda model ile deneysel veriler arasındaki R2 değerlerinin 0,9933-0,9989 arasında değiştiği bulunmuştur. Literatürden seçilen 5 adet ince tabakalı kurutma modelinin kullanılması durumunda R2 değerlerinin 0,9740 ile 0,9999 arasında değiştiği ve aralarından en uygun modelin Approximation of Difusion modeli olduğu görülmüştür. Geliştirilen yeni ampirik modelin R2 değerleri 0,9987 ile 0,9999 arasında bulunmuştur. Geliştirilen yeni model literatürdeki diğer modellere göre daha az model sabiti içerdiğinden bu konudaki araştırmalara pratiklik sağlayacağı ve ince tabaka kuruma davranışının belirlenmesinde daha hassas sonuçlar verebileceği sonucuna varılmıştır.

Referanslar

Ekechukwu, O.V. Review Of Solar-Energy Drying Systems I: An Overview Of Drying Principles And Theory. Ener. Conver. Manage. 1999, 40(6), 593–613. DOI: 10.1016/S0196-8904(98)00092-2

Akpinar, E.K., Bicer, Y. Modeling Of The Drying Of Eggplants In Thin-Layers. Int. J. Food Sci. Technol. 2005, 40, 273–81. DOI: 10.1111/j.1365-2621.2004.00886.x

Cengel, Y.A.; Ghajar A.J. Heat and Mass Transfer: Principles and Applications; Fourth Edition, New York, McGraw-Hill, 2015.

Oktay, Z.; Hepbasli, A. Performance Evaluation of a Heat Pump Assisted Mechanical Opener Dryer. Ener. Conver. and Manage. 2003, 44, 1193–1207. DOI: 10.1016/S0196-8904(02)00140-1

Mujumdar, A.S., “Handbook of Industrial Drying”, Marcel, D., Ed. Inc. New York and Basel, 1995. pp. 948, 1987.

Kudra T. 2004. Energy aspects in drying. Drying Technology 22(5):917–932.

Çay, A.; Tarakçıoğlu, I.; Hepbaşlı, A. Exergetic Performance Assessment of a Stenter System in a Textile Finishing Mill, Int. J. Energy Res. 2007, 31, 1251-1265. DOI: 10.1002/er.1295

Karakoca, A. Determination of the Temperature Area in Yarn Bobbin Drying Process by Finite Difference Method, Msc Thesis, Namık Kemal University Institute of Science, Tekirdağ, Turkey, 2017.

Ip, R.W.L.; Wan, I.C. New Use Heat Transfer Theories for the Design of Heat Setting Machines for Precise Post-Treatment of Dyed Fabrics. J. Defect and Diffusion Forum, 2011, 312-315, 748-751. DOI:10.4028/www.scientific.net/DDF.312-315.748

Efremov, G.I. Drying Kinetics Derived from Diffusion Equation with Flux-Type Boundary Conditions. Drying Technol. 2002, 20(1), 55-66. DOI: 10.1081/DRT-120001366

Kowalski, S.J.; Musielak, G.; Banaszak, J. Experimental Validation of the Heat and Mass Transfer Model for Convective Drying. Drying Technol. 2007, 25(1-3), 107-121. DOI: 10.1080/07373930601160940

Khazaei, J.; Chegini, G.R.; Bakhshiani, M. A Novel Alternative Method for Modeling the Effects of Air Temperature and Slice Thickness on Quality and Drying Kinetics of Tomato Slices: Superposition Technique. Drying Technol. 2008, 26(6), 759-775. DOI: 10.1080/07373930802046427

Özdemir, M. and Y.O., Devres, 1999. The Thin Layer Drying Characteristics of Hazelnuts during Roasting. Journal of Food Engineering, 42; 225-233.

Cihan, A., Kahveci, K. and O., Hacıhafızoğlu, 2007. Modelling of Intermittent Drying of Thin Layer Rough Rice. Journal of Food Engineering, 79; 293-298.

Nordon, P., David, H.G., 1967. Coupled diffusion of moisture and heat in hygroscopic textile materials. International Journal of Heat and Mass Transfer, 10(7); 853-866.

Luikov, A.V., Sheiman, V.A., Kuts, P.S., Slobodkin, L.S., 1967. An approximate method of calculating the kinetics of the drying process, Journal of engineering physics, 13; 387–393.

Blejchar, T., Raska, J., Jablonska, J., Mathematical Simulation of Drying Process of Fibrous Material, EPJ Web of Conferences 180, 02010 (2018), https://doi.org/10.1051/epjconf/201818002010.

Johann, G., E. A. Silva, E.A., Motta Lima, O.C., Pereira, N.C., 2014. Mathematical Modeling of a Convective Textile Drying Process, Brazilian Journal of Chemical Engineering, 31(4); 959-965.

Akan, A.E, Ünal, F., (2020). Thin‑Layer Drying Modeling in the Hot Oil‑Heated Stenter, International Journal of Thermophysics, 41;114, https://doi.org/10.1007/s10765-020-02692-x.

Akan, A.E.; Özkan, D.B.; (2019). Experimental examination and theoretical modeling of drying behavior in the ram machine, Drying Technology, https://doi.org/10.1080/07373937.2019.1662436.

Geankoplis, C.j. Transport Processes and Separation Process Principles, Fourth Edition, Prentice Hall, 2003.

Karathanos, V.T. Determination of Water Content of Dried Fruits by Drying Kinetics. J. Food Eng. 1999, 39, 337-344. DOI: 10.1016/s0260-8774(98)00132-0

El-Beltagy, A.; Gamea, G.R.; Essa, A.H.A. Solar Drying Characteristics of Strawberry. J Food Eng. 2007, 78, 456–64. DOI:10.1016/j.jfoodeng.2005.10.015

Akoy, E.O. Experimental Characterization and Modeling of Thin-Layer Drying of Mango Slices. Int. Food Res. J. 2014, 21(5), 1911–7.

Vega, A.; Fito, P.; Andr´es, A.; Lemus, R. Mathematical Modeling of Hot-Air Drying Kinetics of Red Bell Pepper (var. Lamuyo). J Food Eng. 2007, 79, 1460–6. DOI: 10.1016/j.jfoodeng.2006.04.028.

Kumar, P.D.G.; Hebber, U.H.; Ramesh M.N. Suitability of Thin Layer Models for Infrared-Hot-Air Drying of Onion Slices. LWT-Food Sci. Technol. 2006, 39(6), 700–5.

Meisami-asl E, Rafiee S, Keyhani A, Tabatabaeefar A. 2010. Determination of suitable thin-layer drying curve model for apple slices (Golab). Plant OMICS 3(3):103–8.

Zenoozian, M.S.; Feng, H.; Shahidi, F.; Pourreza, H.R. Image analysis and dynamic modeling of thin-layer drying of osmotically dehydrated pumpkin. J Food Process Preserv. 2008, 32, 88–102. https://doi.org/10.1111/j.1745-4549.2007.00167.x

Darvishi H, Hazbavi E. 2012. Mathematical modeling of thin-layer drying behavior of date palm. Glob J Sci Front Res Math Dec Sci 12(10):9–17.

Rayaguru K, Routray W. 2012. Mathematical modeling of thin-layer drying kinetics of stone apple slices. Intl Food Res J 19(4):1503–10.

Sacilik K. 2007. Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J Food Engr 79(1):23–30. doi:10.1016/j.jfoodeng.2006.01.023

Dash KK, Gope S, Sethi A, Doloi M. 2013. Star fruit slices. Intl J Agric Food Sci Technol 4(7):679–86.

Kumar N, Sarkar BC, Sharma HK. 2012b. Mathematical modeling of thin-layer hot air drying of carrot pomace. J Food Sci Technol 49(1):33–41.doi:10.1007/s13197-011-0266-7

Demir VA˜ , Gunhan T, Yagcioglu AK. 2007. Mathematical modeling of convection drying of green table olives. Biosyst Engr 98:47–53. doi:10.1016/j.biosystemseng.2007.06.011

Akpinar, E.K. Determination of Suitable Thin-Layer Drying Curve Model for Some Vegetables and Fruits. J. Food Engr. 2006a, 73, 75–84. doi:10.1016/j.jfoodeng.2005.01.007

Yaldız, O.; Ertekin, C. Thin-layer Solar Drying of Some Vegetables. Drying Technol. 2007, 19(3-4), 583–97. DOI: 10.1081/DRT-100103936

Gan, P.L.; Poh, P.E. Investigation on the Effect of Shapes on the Drying Kinetics and Sensory Evaluation Study of Dried Jackfruit. Int. J. Sci. Engr. 2014, 7, 193–8. DOI: 10.12777/ijse.7.2.193-198

Aghbashlo, M.; Kianmehr, M.H.; Khani, S.; Ghasemi, M. Mathematical Modeling of Thin-Layer Drying of Carrot. Int. Agrophys. 2009, 23, 313-7.

Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F. Modeling Microwave-Drying Kinetics and Moisture Diffusivity of Mabonde Banana Variety. Int. J. Agric. Biol. Engr. 2014, 7(6), 107–13. DOI:10.3965/j.ijabe.20140706.013

Diamante L, Durand M, Savage G, Vanhanen L. 2010a. Effect of temperature on the drying characteristics, colour and ascorbic acid content of green and gold kiwifruits. Intl Food Res J 451:441–51.

Tzempelikos DA, Vouros AP, Bardakas AV, Filios AE, Margaris DP. 2015. Experimental study on convective drying of quince slices and evaluation of thin-layer drying models. Engr Agric Environ Food 8(3):169–77.

Pardeshi IL, Arora S, Borker PA. 2009. Thin-layer drying of green peas and selection of a suitable thin-layer drying model. Drying Technol 27(2):288–95. doi:10.1080/07373930802606451

Pereira W, Silva CMDPS, Gama FJA. 2014. Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J Saudi Soc Agric Sci 13(1):67–74. doi:10.1016/j.jssas.2013.01.003

Da Silva WP, Rodrigues AF, Silva CMDPS, De Castro DS, Gomes JP. 2015. Comparison between continuous and intermittent drying of whole bananas using empirical and diffusion models to describe the processes. J Food Engr 166:230–6. doi:10.1016/j.jfoodeng.2015.06.018

Ip, R.W.L and Wan, E.I.C., The new use of diffusion theories for the design of heat setting process in fabric drying, Advances in Modeling of Fluid Dynamics, Chapter 7, Intech, (2012), DOI:10.5772/48484.

Yayınlanmış

2022-12-28

Nasıl Atıf Yapılır

Akan, A. E. (2022). Ram Makinesinde İnce Tabaka Kurutma Modelleme İçin Yeni Bir Ampirik Model. ICONTECH ULUSLARARASI DERGİSİ, 6(4), 24–42. https://doi.org/10.5281/zenodo.7489810

Sayı

Bölüm

Articles