A New Empirical Model for Thin-Layer Drying Modeling in the Stenter

Авторы

  • Ahmet Erhan Akan Machinery and Metal Technology, Çorlu Vocational School, Tekirdağ Namık Kemal University, Çorlu, Tekirdağ, Türkiye

DOI:

https://doi.org/10.5281/zenodo.7489810

Ключевые слова:

Drying, Ram machine, Stenter, Theoretical modelling, Thin-layer modelling

Аннотация

This study involves the drying behaviour of a hot oil heated stenter used for drying and sizing of woven or knitted fabrics and modelling with a new empirical model developed. The suitability of the new model developed was compared with a theoretical model of First Order Kinetic model and 5 thin layer drying models selected from the literature. Statistical analyses between model and experimental data were evaluated by using MATLAB 2019a program as a benchmark. R2 values in the regression analysis were taken as the main criterion. In addition, SEE and RMSE data were evaluated in determining model suitability. According to the results obtained, in the case that the drying behaviour of the stenter was modelled with a First Order Kinetic model, R2 values between the model and experimental data were found to vary between 0.9933-0.9989. In the case of using 5 thin layer drying models selected from the literature, R2 values were found to range between 0.9740 and 0.9999 and the most suitable model among them was Approximation of Diffusion model. R2 values of the new empirical model developed were found to be between 0.9987 and 0.9999. Since the new model developed contains fewer model constants than other models available in the literature, it is concluding to provide practicality in researches on this subject and may display more sensitive results in determining thin layer drying behaviour.

Библиографические ссылки

Ekechukwu, O.V. Review Of Solar-Energy Drying Systems I: An Overview Of Drying Principles And Theory. Ener. Conver. Manage. 1999, 40(6), 593–613. DOI: 10.1016/S0196-8904(98)00092-2

Akpinar, E.K., Bicer, Y. Modeling Of The Drying Of Eggplants In Thin-Layers. Int. J. Food Sci. Technol. 2005, 40, 273–81. DOI: 10.1111/j.1365-2621.2004.00886.x

Cengel, Y.A.; Ghajar A.J. Heat and Mass Transfer: Principles and Applications; Fourth Edition, New York, McGraw-Hill, 2015.

Oktay, Z.; Hepbasli, A. Performance Evaluation of a Heat Pump Assisted Mechanical Opener Dryer. Ener. Conver. and Manage. 2003, 44, 1193–1207. DOI: 10.1016/S0196-8904(02)00140-1

Mujumdar, A.S., “Handbook of Industrial Drying”, Marcel, D., Ed. Inc. New York and Basel, 1995. pp. 948, 1987.

Kudra T. 2004. Energy aspects in drying. Drying Technology 22(5):917–932.

Çay, A.; Tarakçıoğlu, I.; Hepbaşlı, A. Exergetic Performance Assessment of a Stenter System in a Textile Finishing Mill, Int. J. Energy Res. 2007, 31, 1251-1265. DOI: 10.1002/er.1295

Karakoca, A. Determination of the Temperature Area in Yarn Bobbin Drying Process by Finite Difference Method, Msc Thesis, Namık Kemal University Institute of Science, Tekirdağ, Turkey, 2017.

Ip, R.W.L.; Wan, I.C. New Use Heat Transfer Theories for the Design of Heat Setting Machines for Precise Post-Treatment of Dyed Fabrics. J. Defect and Diffusion Forum, 2011, 312-315, 748-751. DOI:10.4028/www.scientific.net/DDF.312-315.748

Efremov, G.I. Drying Kinetics Derived from Diffusion Equation with Flux-Type Boundary Conditions. Drying Technol. 2002, 20(1), 55-66. DOI: 10.1081/DRT-120001366

Kowalski, S.J.; Musielak, G.; Banaszak, J. Experimental Validation of the Heat and Mass Transfer Model for Convective Drying. Drying Technol. 2007, 25(1-3), 107-121. DOI: 10.1080/07373930601160940

Khazaei, J.; Chegini, G.R.; Bakhshiani, M. A Novel Alternative Method for Modeling the Effects of Air Temperature and Slice Thickness on Quality and Drying Kinetics of Tomato Slices: Superposition Technique. Drying Technol. 2008, 26(6), 759-775. DOI: 10.1080/07373930802046427

Özdemir, M. and Y.O., Devres, 1999. The Thin Layer Drying Characteristics of Hazelnuts during Roasting. Journal of Food Engineering, 42; 225-233.

Cihan, A., Kahveci, K. and O., Hacıhafızoğlu, 2007. Modelling of Intermittent Drying of Thin Layer Rough Rice. Journal of Food Engineering, 79; 293-298.

Nordon, P., David, H.G., 1967. Coupled diffusion of moisture and heat in hygroscopic textile materials. International Journal of Heat and Mass Transfer, 10(7); 853-866.

Luikov, A.V., Sheiman, V.A., Kuts, P.S., Slobodkin, L.S., 1967. An approximate method of calculating the kinetics of the drying process, Journal of engineering physics, 13; 387–393.

Blejchar, T., Raska, J., Jablonska, J., Mathematical Simulation of Drying Process of Fibrous Material, EPJ Web of Conferences 180, 02010 (2018), https://doi.org/10.1051/epjconf/201818002010.

Johann, G., E. A. Silva, E.A., Motta Lima, O.C., Pereira, N.C., 2014. Mathematical Modeling of a Convective Textile Drying Process, Brazilian Journal of Chemical Engineering, 31(4); 959-965.

Akan, A.E, Ünal, F., (2020). Thin‑Layer Drying Modeling in the Hot Oil‑Heated Stenter, International Journal of Thermophysics, 41;114, https://doi.org/10.1007/s10765-020-02692-x.

Akan, A.E.; Özkan, D.B.; (2019). Experimental examination and theoretical modeling of drying behavior in the ram machine, Drying Technology, https://doi.org/10.1080/07373937.2019.1662436.

Geankoplis, C.j. Transport Processes and Separation Process Principles, Fourth Edition, Prentice Hall, 2003.

Karathanos, V.T. Determination of Water Content of Dried Fruits by Drying Kinetics. J. Food Eng. 1999, 39, 337-344. DOI: 10.1016/s0260-8774(98)00132-0

El-Beltagy, A.; Gamea, G.R.; Essa, A.H.A. Solar Drying Characteristics of Strawberry. J Food Eng. 2007, 78, 456–64. DOI:10.1016/j.jfoodeng.2005.10.015

Akoy, E.O. Experimental Characterization and Modeling of Thin-Layer Drying of Mango Slices. Int. Food Res. J. 2014, 21(5), 1911–7.

Vega, A.; Fito, P.; Andr´es, A.; Lemus, R. Mathematical Modeling of Hot-Air Drying Kinetics of Red Bell Pepper (var. Lamuyo). J Food Eng. 2007, 79, 1460–6. DOI: 10.1016/j.jfoodeng.2006.04.028.

Kumar, P.D.G.; Hebber, U.H.; Ramesh M.N. Suitability of Thin Layer Models for Infrared-Hot-Air Drying of Onion Slices. LWT-Food Sci. Technol. 2006, 39(6), 700–5.

Meisami-asl E, Rafiee S, Keyhani A, Tabatabaeefar A. 2010. Determination of suitable thin-layer drying curve model for apple slices (Golab). Plant OMICS 3(3):103–8.

Zenoozian, M.S.; Feng, H.; Shahidi, F.; Pourreza, H.R. Image analysis and dynamic modeling of thin-layer drying of osmotically dehydrated pumpkin. J Food Process Preserv. 2008, 32, 88–102. https://doi.org/10.1111/j.1745-4549.2007.00167.x

Darvishi H, Hazbavi E. 2012. Mathematical modeling of thin-layer drying behavior of date palm. Glob J Sci Front Res Math Dec Sci 12(10):9–17.

Rayaguru K, Routray W. 2012. Mathematical modeling of thin-layer drying kinetics of stone apple slices. Intl Food Res J 19(4):1503–10.

Sacilik K. 2007. Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J Food Engr 79(1):23–30. doi:10.1016/j.jfoodeng.2006.01.023

Dash KK, Gope S, Sethi A, Doloi M. 2013. Star fruit slices. Intl J Agric Food Sci Technol 4(7):679–86.

Kumar N, Sarkar BC, Sharma HK. 2012b. Mathematical modeling of thin-layer hot air drying of carrot pomace. J Food Sci Technol 49(1):33–41.doi:10.1007/s13197-011-0266-7

Demir VA˜ , Gunhan T, Yagcioglu AK. 2007. Mathematical modeling of convection drying of green table olives. Biosyst Engr 98:47–53. doi:10.1016/j.biosystemseng.2007.06.011

Akpinar, E.K. Determination of Suitable Thin-Layer Drying Curve Model for Some Vegetables and Fruits. J. Food Engr. 2006a, 73, 75–84. doi:10.1016/j.jfoodeng.2005.01.007

Yaldız, O.; Ertekin, C. Thin-layer Solar Drying of Some Vegetables. Drying Technol. 2007, 19(3-4), 583–97. DOI: 10.1081/DRT-100103936

Gan, P.L.; Poh, P.E. Investigation on the Effect of Shapes on the Drying Kinetics and Sensory Evaluation Study of Dried Jackfruit. Int. J. Sci. Engr. 2014, 7, 193–8. DOI: 10.12777/ijse.7.2.193-198

Aghbashlo, M.; Kianmehr, M.H.; Khani, S.; Ghasemi, M. Mathematical Modeling of Thin-Layer Drying of Carrot. Int. Agrophys. 2009, 23, 313-7.

Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F. Modeling Microwave-Drying Kinetics and Moisture Diffusivity of Mabonde Banana Variety. Int. J. Agric. Biol. Engr. 2014, 7(6), 107–13. DOI:10.3965/j.ijabe.20140706.013

Diamante L, Durand M, Savage G, Vanhanen L. 2010a. Effect of temperature on the drying characteristics, colour and ascorbic acid content of green and gold kiwifruits. Intl Food Res J 451:441–51.

Tzempelikos DA, Vouros AP, Bardakas AV, Filios AE, Margaris DP. 2015. Experimental study on convective drying of quince slices and evaluation of thin-layer drying models. Engr Agric Environ Food 8(3):169–77.

Pardeshi IL, Arora S, Borker PA. 2009. Thin-layer drying of green peas and selection of a suitable thin-layer drying model. Drying Technol 27(2):288–95. doi:10.1080/07373930802606451

Pereira W, Silva CMDPS, Gama FJA. 2014. Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J Saudi Soc Agric Sci 13(1):67–74. doi:10.1016/j.jssas.2013.01.003

Da Silva WP, Rodrigues AF, Silva CMDPS, De Castro DS, Gomes JP. 2015. Comparison between continuous and intermittent drying of whole bananas using empirical and diffusion models to describe the processes. J Food Engr 166:230–6. doi:10.1016/j.jfoodeng.2015.06.018

Ip, R.W.L and Wan, E.I.C., The new use of diffusion theories for the design of heat setting process in fabric drying, Advances in Modeling of Fluid Dynamics, Chapter 7, Intech, (2012), DOI:10.5772/48484.

Загрузки

Опубликован

2022-12-28

Как цитировать

Akan, A. E. (2022). A New Empirical Model for Thin-Layer Drying Modeling in the Stenter. ICONTECH INTERNATIONAL JOURNAL, 6(4), 24–42. https://doi.org/10.5281/zenodo.7489810

Выпуск

Раздел

Articles

Наиболее читаемые статьи этого автора (авторов)