Structural Characterization of Thermally Stabilized Poly(acrylonitrile) Fibers by Means of X-ray Diffraction, FT-IR Spectroscopy, and TGA Analysis

Yazarlar

  • TUBA DEMIREL Erciyes University
  • Md. Mahbubor Rahman Bangladesh University of Textiles, Tejgaon, Dhaka, Bangladesh
  • Ismail KARACAN Erciyes University

DOI:

https://doi.org/10.46291/ICONTECHvol5iss2pp1-9

Anahtar Kelimeler:

Stabilized PAN Fibers, Thermal Stabilization, Ammonium Bromide (NH4Br) salts, XRD, FT-IR, TGA.

Özet

Termal olarak stabilize edilmiş orjinal PAN liflerinin yapısı ve etkileri, hacim yoğunluğu, renk değişimi gözlemleri, alev testleri, X-ışını kırınımı (XRD), kızılötesi spektroskopi (FT-IR) ve termogravimetrik analiz (TGA) ölçümleri kullanılarak karakterize edilmiştir. XRD çalışmasının analizinden elde edilen sonuçlar, orijinal moleküler yapının yanal olarak düzenli bir durumdan tamamen düzensiz bir amorf yapıya dönüşümünü göstermiştir. FT-IR analizinden elde edilen deneysel sonuçlar, oksijen içeren fonksiyonel grupların oluşumunun yardımcı olduğu hızlı ve eş zamanlı aromatizasyon ve dehidrojenasyon reaksiyonlarını göstermiştir. TGA analizi, 1000 °C'de % 72'lik bir karbon verimi göstermiştir. NH4Br ön işleminin uygulanması ve kullanımının, termal stabilizasyon reaksiyonlarının başarılı bir şekilde tamamlanması için gerekli işlem süresini önemli ölçüde azaltarak düşürülmüş bir maliyetle karbon liflerinin üretkenliğini arttırması beklenmektedir.

 

 

Referanslar

Bhatt, P., Goel, A. (2017). Carbon Fibres: Production, Properties, and Potential Use., Indian Journal of Engineering and Materials Sciences, Sci. 14 (1): 52-57, http://dx.doi.org/10.13005/msri/140109

Dalton, S., Heatley, F., Budd, P.M. (1999). Thermal Stabilization of Polyacrylonitrile Fibers. Polymer, 40 (20): 5531-5543, https://doi.org/10.1016/S0032-3861(98)00778-2

Dang, W., Liu, J., Wang, X., et al. (2020). Structural Transformation of Polyacrylonitrile (PAN) Fibers During Rapid Thermal Pretreatment in Nitrogen Atmosphere. Polymers, 12(1): 63-75, https://doi.org/10.3390/polym12010063

Farsani, R.E., Shokuhfar, A., Sedghi, A. (2006). Stabilization of Commercial Polyacrylonitrile Fibres for Fabrication of Low-cost Medium-strength Carbon Fibres. E- Polymers, 6(1): 1-10, https://doi.org/10.1515/epoly.2006.6.1.1

Farsani, R.E. (2012). Production of Carbon Fibers from Acrylic Fibers. International Conference on Chemical (ICCEE'2012) March 24-25 Dubai, 310-312, http://psrcentre.org/images/extraimages/19.%20312758.pdf

Grassie, N., Mcguchan, R. (1972). Pyrolysis of Polyacrylonitrile and Related Polymers—vı. Acrylonitrile Copolymers Containing Carboxylic Acid and Amide Structures. European Polymer Journal, 8(2): 257-269, https://doi.org/10.1016/0014-3057(72)90032-8

Ge, Y., Fu, Z., Deng, Y., Zhang, M., Zhang, H. (2019). The Effects of Chemical Reaction on the Microstructure and Mechanical Properties of Polyacrylonitrile (PAN) Precursor Fibers. Journal of Materials science 54 (1): 12592–12604, https://doi.org/10.1007/s10853-019-03781-5

Haoa, J., Liu, Y., Lu, C. (2018). Effect of Acrylonitrile Sequence Distribution on the Thermal Stabilization Reactions and Carbon Yields of Poly (acrylonitrile-co-methyl acrylate). Polymer Degradation and Stability, 147(1): 89–96, https://doi.org/10.1016/j.polymdegradstab.2017.11.010

Karacan, I., Erdogan, G. (2012). The Effect of Ethylenediamine Pretreatment on the Molecular Structure of Thermally Stabilized Polyacrylonitrile Fibers before Carbonization. Polymer Engineering & Science, 52(3): 467-480, https://doi.org/10.1002/pen.22104

Karacan, I., Meseli, H. (2018). Characterization of Amorphous Carbon Fibers Produced from Thermally stabilized polyamide 6 fibers. Journal of Industrial Textiles, 2018; 47(6): 1185–121, https://doi.org/10.1177/1528083716682922

Maghe, M., et al. (2016). Using Ionic Liquids to Reduce Energy Consumption for Carbon Fibre Production. Journal of Materials Chemistry, 4(42): 16619–16626, https://doi.org/10.1039/C6TA06842A

Ouyang, Q., Cheng, L., Wang, H., Li, K. (2008). Mechanism and Kinetics of the Stabilization Reactions of Itaconic Acid-modified Polyacrylonitrile. Polymer Degradation and Stability, 93(8): 1415-1421, https://doi.org/10.1016/j.polymdegradstab.2008.05.021

Sun, T., Hou, Y., Wang, H. (2009). Effect of Atmospheres on Stabilization of PAN Fibers. Journal of Macromolecular Science, Part A, 46(8): 807-815, https://doi.org/10.1016/j.matchemphys.2008.08.088

Sha, Y., Liu, W., Li, Y., Cao, W. (2019). Formation Mechanism of Skin-core Chemical Structure Within Stabilized Polyacrylonitrile Monofilaments. Nanoscale Research Letters, 14(93): 2-7, https://doi.org/10.1186/s11671-019-2926-x

Visakh, P.M., Arao, Y. (2015). Flame Retardants: Polymer Blends, Composites and Nanocomposites (Engineering Materials), Springer International Publishing, pp 328.

Zhao, Y., Guoxin, H. (2013). Removal of SO2 by a Mixture of Caprolactam Tetrabutyl Ammonium Bromide Ionic Liquid and Sodium Humate Solution. RSC Advances, 3(7): 2234-2240, https://doi.org/10.1039/C2RA22600F

Zhang, X., et al. (2020). Carbonization of Single Polyacrylonitrile Chains in Coordination Nanospaces. Chemical science international journal, 11(1): 10844–10849, https://doi.org/10.1039/D0SC02048F

Wei, H., Suo, X., Lu, C., Liu, Y. (2019). A Comparison of Coagulation and Gelation on the Structures and Stabilization Behaviors of Polyacrylonitrile Fibers. Journal of Applied Polymer Science, 137(19): 1-10, https://doi.org/10.1002/app.48671

Yayınlanmış

2021-06-28

Nasıl Atıf Yapılır

DEMIREL, T., Rahman, M. M., & KARACAN, I. (2021). Structural Characterization of Thermally Stabilized Poly(acrylonitrile) Fibers by Means of X-ray Diffraction, FT-IR Spectroscopy, and TGA Analysis. ICONTECH ULUSLARARASI DERGİSİ, 5(2), 1–9. https://doi.org/10.46291/ICONTECHvol5iss2pp1-9

Sayı

Bölüm

Articles