Genome Editing in Animal Husbandry: CRISPR

Авторы

DOI:

https://doi.org/10.5281/zenodo.16881021

Ключевые слова:

Genetic Modification, Animal Husbandry, CRISPR/Cas9

Аннотация

Genome editing in farm animals holds significant promise for a wide range of practical applications. It facilitates the improvement of production traits, enhances the economic value of livestock, and contributes to increased resistance to infectious diseases. In addition to agricultural benefits, genetically modified animals serve as important models in biomedical research and pharmaceutical production, and they have shown potential as xenograft donors for human transplantation. Recent advancements have led to the development of various tools aimed at increasing the efficiency and precision of genetic modifications, thereby streamlining the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, homologous recombination, transposon systems, and site-specific endonucleases. Among these, four major classes of site-specific endonucleases have attracted considerable attention due to their ability to induce targeted DNA double-strand breaks, which facilitate precise genome modifications via endogenous DNA repair pathways. Currently, clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems—particularly CRISPR/Cas9—dominate the genome editing field. These systems have been successfully employed in generating genetically modified sheep and goats, which serve as valuable models for studying gene function, improving selective breeding, producing therapeutic proteins in milk, enhancing disease resistance, mimicking human disease phenotypes, and potentially serving as hosts for human organ development. Moreover, several promising derivatives of the CRISPR/Cas systems have emerged, including tools that enable homology-directed repair (HDR) and base editing, the latter allowing precise single-nucleotide changes without the requirement for a donor DNA template. These innovations further expand the utility and precision of genome editing technologies. This review provides a comprehensive overview of genome editing in livestock, with a particular emphasis on the application and potential of CRISPR/Cas9 systems in both agricultural and biomedical contexts.

Библиографические ссылки

Asmamaw M., Zawdie B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics. 2021;15:353–361.

Ayanoglu F.B., Elcin A.E., Elcin Y.M. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk. J. Biol. 2020;44:110–120.

Bilici E, 2024. CRISPR Teknolojisi ile Zoonotik Bruselloz Tanısına Genel Bakış. Kafkasya Journal of Health Sciences, 1(2), 42-47.

Bilici E, Ayvazoğlu P, 2024. Opinion of Academicians Regarding the Use of the CRISPR-Cas System in Türkiye, ISPEC Journal of Agricultural Sciences, 8(4): 1086-1098.

Dignard C, Leibler JH. Recent research on occupational animal exposures and health risks: a narrative review. Curr Environ Health Rep. 2019;6:236‐246.

Edelson PJ, Harold R, Ackelsberg J, et al. Climate change and the epidemiology of infectious diseases in the United States. Clin Infect Dis. 2023;76:950‐956.

Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60.

Graham C, Hart S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opin Biol Ther. 2021;21(6):767–80.

Islam T. CRISPR-Cas technology in modifying food crops. CABI Rev. 2019;2019:1–16.

Janik E., Niemcewicz M., Ceremuga M., Krzowski L., Saluk-Bijak J., Bijak M. Various Aspects of a Gene Editing System-CRISPR-Cas9. Int. J. Mol. Sci. 2020;21:9604.

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821.

Khan FA. Boca Raton, FL: CRC Press; 2020. Biotechnology fundamentals Third Edition.

Khwatenge CN, Nahashon SN. Recent advances in the application of CRISPR/Cas9 gene editing system in poultry species. Front Genet. 2021 Feb 19;12:627714.

Kimberland M.L., Hou W., Alfonso-Pecchio A., Wilson S., Rao Y., Zhang S., Lu Q. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J. Biotechnol. 2018;284:91–101.

Li D., Qiu Z., Shao Y., Chen Y., Guan Y., Liu M., Li Y., Gao N., Wang L., Lu X., et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol. 2013;31:681–683.

Li J, Li Y, Guo Q, Wang X, Yin G. The Reform and practice of “learning and innovation integration” type of animal breeding theory and biotechnology curriculum system based on” project-driven”. Curricul Teach Methodol. 2024;7(2):187–93.

Li T, Liu B, Spalding MH, Weeks DP, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol. 2012;30(5):390–392.

Makarova KS, Wolf YI, Koonin EV. The basic building blocks and evolution of CRISPR-CAS systems. Biochem Soc Trans. 2013;41(6):1392–400.

Mao Z, Lei H, Chen R, Ren S, Liu B, Gao Z. CRISPR molecular detection techniques: advances from single to multiple detection methods. Trends Anal Chem. 2023;166:117198.

Mashiko D., Fujihara Y., Satouh Y., Miyata H., Isotani A., Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci. Rep. 2013;3:3355.

McCarron A, Cmielewski P, Reyne N, McIntyre C, Finnie J, Craig F, et al. Phenotypic characterization and comparison of cystic fibrosis rat models generated using CRISPR/Cas9 gene editing. Am J Pathol. 2020;190(5):977–93.

Niemiec E, Howard HC. Ethical issues related to research on genome editing in human embryos. Comput Struct Biotechnol J. 2020;18:887–96.

Niu Y.Y., Shen B., Cui Y.Q., Chen Y.C., Wang J.Y., Wang L., Kang Y., Zhao X.Y., Si W., Li W., et al. Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos. Cell. 2014;156:836–843.

Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, Yu C, Zhang L, Li X, Wang P, Fan HY, Du B, Liu B, Liu M, Li D. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res. 2013;41(11):e120.

Ricroch AE, Henard-Damave MC. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol. 2016;36(4):675–690.

Sezer S, Bilici E, Hacısalihoğlu S, 2023, Ruminantlarda Sürü Yönetimi Ve Dikkat Edilmesi Gereken Hususlar, Tarımda Yaşamak, İKSAD Publishing House, 101-118.

Shinwari ZK, Tanveer F, Khalil AT. Ethical issues regarding CRISPR mediated genome editing. Curr Issues Mol Biol. 2018;26:103–10.

Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY,

Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459(7245):437–441.

Singh P., Ali S.A. Impact of CRISPR-Cas9-Based Genome Engineering in Farm Animals. Vet. Sci. 2021;8:122.

Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146(2):318–331.

Sovová T, Kerins G, Demnerová K, Ovesná J. Genome editing with engineered nucleases in economically important animals and plants: state of the art in the research pipeline. Curr Issues Mol Biol. 2017;21:41–62.

Tian M, Zhang R, Li J. Emergence of CRISPR/Cas9‐mediated bioimaging: a new dawn of in‐situ detection. Biosens Bioelectron. 2023;232:115302.

Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature. 2009;459(7245):442–445.

Van Eenennaam A. The contribution of transgenic and genome-edited animals to agricultural and industrial applications. Rev. Sci. et Tech. de l’OIE. 2018;37:97–112.

Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point‐of‐care diagnostics for infectious diseases: from methods to devices. Nano Today. 2021;37:101092.

Wang X., Wang Y., Wu X., Wang J., Wang Y., Qiu Z., Chang T., Huang H., Lin R.J., Yee J.K. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat. Biotechnol. 2015;33:175–178.

Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, Liu Y, Wang X, Li H, Lai W, He Y, Yao A, Ma L, Shao Y, Zhang B, Wang C, Chen H, Deng H. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther. 2017;25(8):1782–1789.

Yunes MC, Osório-Santos Z, von Keyserlingk MAG, Hötzel MJ. Gene editing for improved animal welfare and production traits in cattle: will this technology be embraced or rejected by the public? Sustainability. 2021;13(9):4966.

Zhang B. CRISPR/Cas gene therapy. J. Cell. Physiol. 2021;236:2459–2481.

Zhang J., Liu J., Yang W., Cui M., Dai B., Dong Y., Yang J., Zhang X., Liu D., Liang H., et al. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats. Theriogenology. 2019;132:1–11.

Zhang K, Raboanatahiry N, Zhu B, Li M. Progress in genome editing technology and its application in plants. Front Plant Sci. 2017;8:177.

Zhang X. Development of CRISPR-Mediated Nucleic Acid Detection Technologies and Their Applications in the Livestock Industry. Genes (Basel). 2022 Nov 2;13(11):2007.

Загрузки

Опубликован

2025-06-26

Как цитировать

OKCUOĞLU, İpek. (2025). Genome Editing in Animal Husbandry: CRISPR. ICONTECH INTERNATIONAL JOURNAL, 8(3), 249–258. https://doi.org/10.5281/zenodo.16881021