A Short Overview on Preparation of Different Metal Oxide Nanoparticle by Using Different Techniques
Ключевые слова:
Metal Oxide, Nanoparticles, Monometallic, BimetallicАннотация
Nanotechnology has emerged as a cutting-edge field in recent years. Metal oxide nanoparticles are produced using a variety of processes. Metal oxide nanoparticles are further classified into two types: monometallic and bimetallic nanoparticles. Each method has its advantages and disadvantages, and the choice of method depends on the desired properties of the final MONPs.
Библиографические ссылки
G. Sharma et al., ‘Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review’, Journal of King Saud University - Science, vol. 31, no. 2. Elsevier B.V., pp. 257–269, Apr. 01, 2019. doi: 10.1016/j.jksus.2017.06.012.
M. J. Ndolomingo, N. Bingwa, and R. Meijboom, ‘Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts’, Journal of Materials Science, vol. 55, no. 15. Springer, pp. 6195–6241, May 01, 2020. doi: 10.1007/s10853-020-04415-x.
M. Soylak, M. S. Jagirani, and F. Uzcan, ‘Metal-doped Magnetic Graphene Oxide Nanohybrid for Solid-phase Microextraction of Copper from Environmental Samples’, Iran J Sci Technol Trans A Sci, vol. 46, no. 3, pp. 807–817, Jun. 2022, doi: 10.1007/s40995-022-01311-8.
F. Uzcan and M. Soylak, ‘CuCo2O4 as affective adsorbent for dispersive solid-phase extraction of lead from food, cigarette and water samples before FAAS detection’, Chemical Papers, vol. 75, no. 12, pp. 6367–6375, Dec. 2021, doi: 10.1007/s11696-021-01797-3.
N. Jara et al., ‘Photochemical synthesis of gold and silver nanoparticles-a review’, Molecules, vol. 26, no. 15, Aug. 2021, doi: 10.3390/molecules26154585.
S. S. Salem and A. Fouda, ‘Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview’, Biol Trace Elem Res, vol. 199, pp. 344–370, 2011, doi: 10.1007/s12011-020-02138-3/Published.
M. J. Ndolomingo, N. Bingwa, and R. Meijboom, ‘Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts’, Journal of Materials Science, vol. 55, no. 15. Springer, pp. 6195–6241, May 01, 2020. doi: 10.1007/s10853-020-04415-x.
M. R. Rezk, K. A. Badr, N. S. Abdel-Naby, and M. M. Ayyad, ‘A novel, rapid and simple UPLC–MS/MS method for quantification of favipiravir in human plasma: Application to a bioequivalence study’, Biomedical Chromatography, vol. 35, no. 7, Jul. 2021, doi: 10.1002/bmc.5098.
M. R. Rezk, K. A. Badr, N. S. Abdel-Naby, and M. M. Ayyad, ‘A novel, rapid and simple UPLC–MS/MS method for quantification of favipiravir in human plasma: Application to a bioequivalence study’, Biomedical Chromatography, vol. 35, no. 7, Jul. 2021, doi: 10.1002/bmc.5098.
M. R. Rezk, K. A. Badr, N. S. Abdel-Naby, and M. M. Ayyad, ‘A novel, rapid and simple UPLC–MS/MS method for quantification of favipiravir in human plasma: Application to a bioequivalence study’, Biomedical Chromatography, vol. 35, no. 7, Jul. 2021, doi: 10.1002/bmc.5098.
H. Vieyra, J. M. Molina-Romero, J. de D. Calderón-Nájera, and A. Santana-Díaz, ‘Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review’, Polymers, vol. 14, no. 16. MDPI, Aug. 01, 2022. doi: 10.3390/polym14163412.
P. H. C. Camargo, K. G. Satyanarayana, and F. Wypych, ‘Nanocomposites: Synthesis, structure, properties and new application opportunities’, Materials Research, vol. 12, no. 1, pp. 1–39, 2009, doi: 10.1590/S1516-14392009000100002.
Z. Hao, D. Cheng, Y. Guo, and Y. Liang, ‘Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature’, Appl Catal B, vol. 33, no. 3, pp. 217–222, Oct. 2001, doi: 10.1016/S0926-3373(01)00172-2.
F. Uzcan and M. Soylak, ‘CuCo2O4 as affective adsorbent for dispersive solid-phase extraction of lead from food, cigarette and water samples before FAAS detection’, Chemical Papers, vol. 75, no. 12, pp. 6367–6375, Dec. 2021, doi: 10.1007/s11696-021-01797-3.
S. Ozdemir, E. Kılınç, Ö. Acer, and M. Soylak, ‘Simultaneous preconcentrations of Cu(II), Ni(II), and Pb(II) by SPE using E. profundum loaded onto Amberlite XAD-4’, Microchemical Journal, vol. 171, Dec. 2021, doi: 10.1016/j.microc.2021.106758.
N. H. Le et al., ‘Photo-induced generation of size controlled Au nanoparticles on pure siliceous ordered mesoporous silica for catalytic applications’, Microporous and Mesoporous Materials, vol. 295, p. 109952, Mar. 2020, doi: 10.1016/J.MICROMESO.2019.109952.
J. S. Gabriel, V. A. M. Gonzaga, A. L. Poli, and C. C. Schmitt, ‘Photochemical synthesis of silver nanoparticles on chitosans/montmorillonite nanocomposite films and antibacterial activity’, Carbohydr Polym, vol. 171, pp. 202–210, Sep. 2017, doi: 10.1016/J.CARBPOL.2017.05.021.
M. Sakamoto, M. Fujistuka, and T. Majima, ‘Light as a construction tool of metal nanoparticles: Synthesis and mechanism’, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 10, no. 1. pp. 33–56, Mar. 2009. doi: 10.1016/j.jphotochemrev.2008.11.002.
L. Somlyai-Sipos et al., ‘Development of Ag nanoparticles on the surface of Ti powders by chemical reduction method and investigation of their antibacterial properties’, Appl Surf Sci, vol. 533, p. 147494, Dec. 2020, doi: 10.1016/J.APSUSC.2020.147494.
C. Megías-Sayago, S. Ivanova, C. López-Cartes, M. A. Centeno, and J. A. Odriozola, ‘Gold catalysts screening in base-free aerobic oxidation of glucose to gluconic acid’, Catal Today, vol. 279, pp. 148–154, Jan. 2017, doi: 10.1016/j.cattod.2016.06.046.
J. Liu, S. H. Huang, L. P. Chen, and L. He, ‘Tin catalyzed silicon nanowires prepared by magnetron sputtering’, Mater Lett, vol. 151, pp. 122–125, Jul. 2015, doi: 10.1016/J.MATLET.2015.03.065.
W. K. Jung et al., ‘Antifungal activity of the silver ion against contaminated fabric’, Mycoses, vol. 50, no. 4, pp. 265–269, Jul. 2007, doi: 10.1111/j.1439-0507.2007.01372.x.
Z. Fang et al., ‘Epitaxial growth of CdS nanoparticle on Bi2S3 nanowire and photocatalytic application of the heterostructure’, Journal of Physical Chemistry C, vol. 115, no. 29, pp. 13968–13976, Jul. 2011, doi: 10.1021/jp112259p.
M. A. Malik, M. Y. Wani, and M. A. Hashim, ‘Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update’, Arabian Journal of Chemistry, vol. 5, no. 4, pp. 397–417, Oct. 2012, doi: 10.1016/J.ARABJC.2010.09.027.
B. R. Bade et al., ‘Hydrothermally synthesized CuO nanostructures and their application in humidity sensing’, AIP Conf Proc, vol. 2335, no. 1, p. 100001, Mar. 2021, doi: 10.1063/5.0043341.
Q. Zhang et al., ‘CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications’, Prog Mater Sci, vol. 60, no. 1, pp. 208–337, Mar. 2014, doi: 10.1016/J.PMATSCI.2013.09.003.
S. S. Salem, E. N. Hammad, A. A. Mohamed, and W. El-Dougdoug, ‘A Comprehensive Review of Nanomaterials: Types, Synthesis, Characterization, and Applications’, Biointerface Res Appl Chem, vol. 13, no. 1, Feb. 2023, doi: 10.33263/BRIAC131.041.
N. Ullah, F. Jérôme, and K. D. O. Vigier, ‘Efficient Nickel-Iron bimetallic nanoparticles catalysts for the selective hydrogenation of biomass-derived sugars to sugar alcohols’, Molecular Catalysis, vol. 529, p. 112558, Aug. 2022, doi: 10.1016/J.MCAT.2022.112558.
Y. Lin, X. Jin, N. I. Khan, G. Owens, and Z. Chen, ‘Efficient removal of As (Ⅲ) by calcined green synthesized bimetallic Fe/Pd nanoparticles based on adsorption and oxidation’, J Clean Prod, vol. 286, p. 124987, Mar. 2021, doi: 10.1016/J.JCLEPRO.2020.124987.
P. Sepúlveda et al., ‘As(V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: The influence of Cu content and morphologic changes in bimetallic nanoparticles’, J Colloid Interface Sci, vol. 524, pp. 177–187, Aug. 2018, doi: 10.1016/J.JCIS.2018.03.113.
F. Liao, T. Zw, B. Lo, S. Chi, and E. Ts, ‘Recent Developments in Palladium-Based Bimetallic Catalysts’, doi: 10.1002/cctc.v7.14/issuetoc.
S. H. Kamarudin et al., ‘A Review on Antimicrobial Packaging from Biodegradable Polymer Composites’, Polymers, vol. 14, no. 1. MDPI, Jan. 01, 2022. doi: 10.3390/polym14010174.
K. Ganzler and A. Salgó, ‘Microwave-extraction -a new method superseding traditional Soxhlet extraction’, Z Lebensm Unters Forsch, vol. 184, no. 4, pp. 274–276, Apr. 1987, doi: 10.1007/BF01027662.
J. Huang et al., ‘A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications’, Biosens Bioelectron, vol. 194, p. 113601, Dec. 2021, doi: 10.1016/J.BIOS.2021.113601.
M. A. Bratescu, O. Takai, and N. Saito, ‘One-step synthesis of gold bimetallic nanoparticles with various metal-compositions’, J Alloys Compd, vol. 562, pp. 74–83, Jun. 2013, doi: 10.1016/J.JALLCOM.2013.02.033.
B. N. Rashmi et al., ‘Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies’, Inorg Chem Commun, vol. 111, Jan. 2020, doi: 10.1016/j.inoche.2019.107580.
M. M. Rahman, S. B. Khan, A. Jamal, M. Faisal, and A. M. Asiri, ‘Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method’, Microchimica Acta, vol. 178, no. 1–2, pp. 99–106, Jul. 2012, doi: 10.1007/s00604-012-0817-2.
R. Li, Z. Chen, N. Ren, Y. Wang, Y. Wang, and F. Yu, ‘Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care’, J Photochem Photobiol B, vol. 199, Oct. 2019, doi: 10.1016/j.jphotobiol.2019.111593.
S. Sharif Mughal, ‘Shahzad Sharif Mughal, Faheem Abbas, Muhammad Usman Tahir, Ali raza ayub, Hafiza Maria javed, Muhammad mamtaz, Hafiza iram. Role of Silver Nanoparticles in Colorimetric Detection of Biomolecules’, Biomedicine and Nursing, vol. 5, no. 4, pp. 31–47, 2019, doi: 10.22541/au.166401164.43094661/v1.
B. Dalton, P. Bhagabati, J. de Micco, R. B. Padamati, and K. O’Connor, ‘A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications’, Catalysts, vol. 12, no. 3. MDPI, Mar. 01, 2022. doi: 10.3390/catal12030319.
A. A. Leonardi, M. J. lo Faro, and A. Irrera, ‘Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review’, Nanomaterials, vol. 11, no. 2, p. 383, Feb. 2021, doi: 10.3390/nano11020383.
B. Dalton, P. Bhagabati, J. de Micco, R. B. Padamati, and K. O’Connor, ‘A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications’, Catalysts, vol. 12, no. 3. MDPI, Mar. 01, 2022. doi: 10.3390/catal12030319.
G. Sharma et al., ‘Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review’, Journal of King Saud University - Science, vol. 31, no. 2. Elsevier B.V., pp. 257–269, Apr. 01, 2019. doi: 10.1016/j.jksus.2017.06.012.
K. Olonisakin et al., ‘Key Improvements in Interfacial Adhesion and Dispersion of Fibers/Fillers in Polymer Matrix Composites; Focus on PLA Matrix Composites’, Composite Interfaces. Taylor and Francis Ltd., 2021. doi: 10.1080/09276440.2021.1878441.
Y. Yang, M. Zhang, H. Song, and C. Yu, ‘Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators’, Acc Chem Res, vol. 53, no. 8, pp. 1545–1556, Aug. 2020, doi: 10.1021/acs.accounts.0c00280.
M. A. Shahbazi, B. Herranz, and H. A. Santos, ‘Nanostructured porous Si-based nanoparticles for targeted drug delivery’, Biomatter, vol. 2, no. 4. pp. 296–312, 2012. doi: 10.4161/biom.22347.
P. Praus, O. Kozák, K. Kočí, A. Panáček, and R. Dvorský, ‘CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide’, J Colloid Interface Sci, vol. 360, no. 2, pp. 574–579, Aug. 2011, doi: 10.1016/j.jcis.2011.05.004.
S. Chen et al., ‘Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells’, J Photochem Photobiol A Chem, vol. 177, no. 2–3, pp. 177–184, Jan. 2006, doi: 10.1016/j.jphotochem.2005.05.023.
J. dos S. C. da Cunha, L. F. C. Nascimento, F. S. da Luz, F. da C. Garcia Filho, M. S. Oliveira, and S. N. Monteiro, ‘Titica Vine Fiber (Heteropsis flexuosa): A Hidden Amazon Fiber with Potential Applications as Reinforcement in Polymer Matrix Composites’, Journal of Composites Science, vol. 6, no. 9, Sep. 2022, doi: 10.3390/jcs6090251.
A. A. Cohen et al., ‘Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models’, doi: 10.1126/scienceabq0839.
U. Bogdanović, V. Lazić, V. Vodnik, M. Budimir, Z. Marković, and S. Dimitrijević, ‘Copper nanoparticles with high antimicrobial activity’, Mater Lett, vol. 128, pp. 75–78, Aug. 2014, doi: 10.1016/J.MATLET.2014.04.106.
S. Sujita and N. H. Sari, ‘THE GREATNESS OF THE CHARACTERISTICS FIBER PSEUDO STEM OUTER LAYER OF MUSA ACUMINATA ORIGIN LOMBOK INDONESIA AS REINFORCING POLYESTER COMPOSITE’, Eastern-European Journal of Enterprise Technologies, vol. 4, no. 12–118, pp. 38–43, 2022, doi: 10.15587/1729-4061.2022.261921.
S. S. Mughal, ‘DIAGNOSIS AND TREATMENT OF DISEASES BY USING METALLIC NANOPARTICLES-A REVIEW’, 2022, doi: 10.22541/au.166401168.84305772/v1.
S. M. Rangappa and E. Syafri, ‘Advancements in Biofibers and Biopolymers for Biocomposites’, Journal of Fibers and Polymer Composites, vol. 1, no. 1, pp. 73–76, Jan. 2022, doi: 10.55043/jfpc.v1i1.20.
P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, ‘Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications’, J Drug Deliv Sci Technol, vol. 53, p. 101174, Oct. 2019, doi: 10.1016/J.JDDST.2019.101174.
H. J. Rao, S. Singh, and P. Janaki Ramulu, ‘Characterization of a Careya Arborea Bast Fiber as Potential Reinforcement for Light Weight Polymer Biodegradable Composites’, Journal of Natural Fibers, 2022, doi: 10.1080/15440478.2022.2128147.
M. Akter, M. H. Uddin, and I. S. Tania, ‘Biocomposites based on natural fibers and polymers: A review on properties and potential applications’, Journal of Reinforced Plastics and Composites, vol. 41, no. 17–18, pp. 705–742, Sep. 2022, doi: 10.1177/07316844211070609.
W. Abotbina et al., ‘Recent Developments in Cassava (Manihot esculenta) Based Biocomposites and Their Potential Industrial Applications: A Comprehensive Review’, Materials, vol. 15, no. 19. MDPI, Oct. 01, 2022. doi: 10.3390/ma15196992.
A. Pokharel, K. J. Falua, A. Babaei-Ghazvini, and B. Acharya, ‘Biobased Polymer Composites: A Review’, Journal of Composites Science, vol. 6, no. 9. MDPI, Sep. 01, 2022. doi: 10.3390/jcs6090255.
R. Ramalingam, M. Hemath, S. M. Rangappa, S. Siengchin, and P. S. D. Chellapandi, ‘Aging effects on free vibration and damping characteristics of polymer-based biocomposites: A review’, Polym Compos, vol. 43, no. 6, pp. 3890–3901, Jun. 2022, doi: 10.1002/pc.26664.
S. Siddique and J. C. L. Chow, ‘Recent Advances in Functionalized Nanoparticles in Cancer Theranostics’, Nanomaterials, vol. 12, no. 16. MDPI, Aug. 01, 2022. doi: 10.3390/nano12162826.
M. R. M. Asyraf, T. Khan, A. Syamsir, and A. B. M. Supian, ‘Synthetic and Natural Fiber-Reinforced Polymer Matrix Composites for Advanced Applications’, Materials, vol. 15, no. 17. MDPI, Sep. 01, 2022. doi: 10.3390/ma15176030.
D. S. Mondloe et al., ‘Investigation of Mechanical and Wear Properties of Novel Hybrid Composite based on BANANA, COIR, and EPOXY for Tribological Applications’, International Journal of Engineering Trends and Technology, vol. 70, no. 4, pp. 278–285, Apr. 2022, doi: 10.14445/22315381/IJETT-V70I4P224.
S. M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan, and K. Adibkia, ‘Antimicrobial activity of the metals and metal oxide nanoparticles’, Materials Science and Engineering: C, vol. 44, pp. 278–284, Nov. 2014, doi: 10.1016/J.MSEC.2014.08.031.
P. P. Das and V. Chaudhary, ‘Tribological and dynamic mechanical analysis of bio-composites: A review’, in Materials Today: Proceedings, 2019, vol. 25, pp. 729–734. doi: 10.1016/j.matpr.2019.08.233.
Anindita Saha, Kazi M Maraz, and Ruhul A Khan, ‘Physio-mechanical properties and applications of natural fiber reinforced bio-composites’, GSC Advanced Engineering and Technology, vol. 3, no. 1, pp. 001–010, Jan. 2022, doi: 10.30574/gscaet.2022.3.1.0021.
P. P. Das and V. Chaudhary, ‘Environmental impact and effect of chemical treatment on bio fiber based polymer composites’, in Materials Today: Proceedings, 2020, vol. 49, pp. 3418–3422. doi: 10.1016/j.matpr.2021.03.097.
S. Cheng et al., ‘Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates’, Chemistry of Materials, vol. 15, no. 7, pp. 1560–1566, Apr. 2003, doi: 10.1021/CM0202106.
B. K. Min and C. M. Friend, ‘Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation’, Chem Rev, vol. 107, no. 6, pp. 2709–2724, Jun. 2007, doi: 10.1021/CR050954D.
S. Ozdemir, E. Kılınç, Ö. Acer, and M. Soylak, ‘Simultaneous preconcentrations of Cu(II), Ni(II), and Pb(II) by SPE using E. profundum loaded onto Amberlite XAD-4’, Microchemical Journal, vol. 171, Dec. 2021, doi: 10.1016/j.microc.2021.106758.
M. Haruta, ‘When gold is not noble: Catalysis by nanoparticles’, Chemical Record, vol. 3, no. 2, pp. 75–87, 2003, doi: 10.1002/TCR.10053.
F. Uzcan and M. Soylak, ‘CuCo2O4 as affective adsorbent for dispersive solid-phase extraction of lead from food, cigarette and water samples before FAAS detection’, Chemical Papers, vol. 75, no. 12, pp. 6367–6375, Dec. 2021, doi: 10.1007/s11696-021-01797-3.
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2024 ICONTECH INTERNATIONAL JOURNAL
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.