COINCIDENCE AND COMMON FIXED POINT THEOREMS IN Ƒ-METRIC SPACES
DOI:
https://doi.org/10.46291/ICONTECHvol4iss3pp43-49Ключевые слова:
Ƒ Metric Space, Contraction Mapping, Coincidence Point, Common Fixed Point TheoremАннотация
Recently, the concept of Ƒ metric space has been introduced and have been defined a natural topology in this spaces by Jleli and Samet[6]. Furthermore, a new style of Banach contraction principle has been given in the Ƒ metric spaces. In this paper, we prove some coincidence and common fixed point theorems in Ƒ metric spaces.
Библиографические ссылки
Abbas, M., Jungck, G., Common fixed point results for non-commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416-420.
Almaser, A. L., Lateef, D., Fouad, A. H., Ahmad, J., Relation theoretic contraction results in Ƒ-metric spaces, J. Nonlinear Sci. Appl., 12(2019), 337-344,
Czerwik, S., Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav., 1(1), 5-11 (1993),
Fagin, R., Kumar, R., Sivakumar, D., Comparing top k lists., SIAM J. Discret. Math., 17(1), 134-160 (2003),
G..ahler, V. S., 2-metrische R..aume und ihre topologishe strüktür., Math. Nachr., 26, 115-118 (1963/1964),
Jleli, M., Samet, B., A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015, 14 (2015),
Jleli, M., Samet, B., On a new generalization of metric spaces, J. Fixed Point Theory Appl., 2018, 20:128,
Khamsi, M. A., Hussain, N., KKM mapping in metric type spaces, Nonlinear Anal. 7(9), 3123-3129 (2010),
Kirk, W., Shahzad, N., Fixed Point Theory in distance Spaces, Springer, Cham (2014)
Matthews, S. G., Partial metric topology, In Proceedings of the 8th Summer Conference on General Topology and Applications., Annals of the New York Academy of Sciences, vol. 728, pp. 183-197 (1994)
Mustafa Z., Sims, B., A new approach to generalized metric spaces., J. Nonlinear Convex Anal. 7(2), 289-297 (2006)
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2020 ICONTECH INTERNATIONAL JOURNAL
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.