Alternative Approaches to Antimicrobials

Authors

DOI:

https://doi.org/10.5281/zenodo.8130926

Keywords:

Bacteriophage, Bacteriocin, AMP, Predator Bacteria

Abstract

The extensive utilization of antibiotics over the last eighty years has rescued countless lives of individuals, accelerated technological advancement, and annihilated immeasurable quantities of microorganisms, encompassing both harmful and mutually beneficial species. Microbes associated with humans fulfill various vital roles, and we are currently only at the initial stages of comprehending the manners in which antimicrobial agents have restructured their ecological systems and the resulting functional implications of these alterations. Growing evidence indicates that antibiotics impact the performance of the immune system, our resistance to infections, and our ability to digest food. Hence, it is imperative, now more than ever, to reevaluate our antibiotic usage. In this review, we are going to summarize current research on alternative approaches to antibiotics.

References

Akar, S., & Çetin Uyanıkgil, E. Ö. (2020). Antimikrobiyal Peptitlerin Proinflamatuvar Yanıttaki Potansiyelleri. Medical Journal of Suleyman Demirel University, 27(1).

Arda M (2011). Bakteriyofajlar (Bakteriyel Viruslar). Temel Mikrobiyoloji. Medisan Yayınevi-Ankara. 182-194.

Atterbury, R. J., Hobley, L., Till, R., Lambert, C., Capeness, M. J., Lerner, T. R., ... & Sockett, R. E. (2011). Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Applied and environmental microbiology, 77(16), 5794-5803.

Aydogan DY, Hadımlı HH (2016). Bakteriyofaj Tedavisi. Etlik Vet Mikrobiyal Derg. 27(1): 38-47.

Bauer, D. W., Li, D., Huffman, J., Homa, F. L., Wilson, K., Leavitt, J. C., ... & Evilevitch, A. (2015). Exploring the balance between DNA pressure and capsid stability in herpesviruses and phages. Journal of virology, 89(18), 9288-9298.

Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, HutteL, S., ... ve Muller R (2014). Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angewandte Chemie International Edition, 53(52): 14605-14609.

Bas B (2020). Bakteriyofajlar (Bakteri Virusları): Antibiyotiklere Alternatif Tedavi. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni. 11(1): 38-43.

Ben Brahim, R., Ellouzi, H., Fouzai, K., Asses, N., Neffati, M., Sabatier, J. M., ... & Regaya, I. (2022). Optimized Chemical Extraction Methods of Antimicrobial Peptides from Roots and Leaves of Extremophilic Plants: Anthyllis sericea and Astragalus armatus Collected from the Tunisian Desert. Antibiotics, 11(10), 1302.

Biswas S, Brunel Jm, Dubus Jc, Reynaud-Gaubert M, Ve Rolain Jm (2012). Colistin: an update on the antibiotic of the 21st century. Expert review of anti-infective therapy. 10(8): 917-934.

Borody T, Campbell J, Torres M, Nowak A, Leis S (2011). Reversal of idiopathic thrombocytopenic purpura [ITP] with fecal microbiota transplantation [FMT]. Am J Gastroenterol. 106-941.

Brogden Ka, Ackermann M, Mccray Jr Pb and Tack Bf (2003). Antimicrobial peptides in animals and their role in host defences. International journal of antimicrobial agents, 22(5): 465-478.

Brogden KA (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews microbiology, 3(3): 238-250.

Brogden NK and Brogden KA (2011). Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? International journal of antimicrobial agents. 38(3): 217-225.

Bruhn O, Cauchard J, Schlusselhuber M, Gelhaus C, Podschun R, Thaller G, ... And Grotzinger J (2009). Antimicrobial properties of the equine α-defensin DEFA1 against bacterial horse pathogens. Veterinary immunology and immunopathology. 130(1-2): 102-106.

Bruhn O, Grotzinger J, Cascorbi I, and Jung S (2011). Antimicrobial peptides and proteins of the horse-insights into a well-armed organism. Veterinary research. 42(1): 1-22.

Cavallo, F. M., Jordana, L., Friedrich, A. W., Glasner, C., & van Dijl, J. M. (2021). Bdellovibrio bacteriovorus: a potential ‘living antibiotic’to control bacterial pathogens. Critical Reviews in Microbiology, 47(5), 630-646

Cociancich S, Pesıc A, Petras D, Uhlmann S, Kretz J, Schubert V, ... ve Sussmuth RD (2015). The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. Nature chemical biology. 11(3): 195-197.

Conraths FJ, Schwabenbauer K, Vallat B, Meslın FX, Fussel AE, Slıngenbergh J ve Mettenleıter TC (2011). Animal health in the 21st century—a global challenge.

Cotter Pd, Ross Rp, Hill C (2013). Bacteriocins – a viable alternative to antibiotics? Nat Rev Microbiol. 11(2): 95-105.

Cheema Ub, Younas M, Sultan Ji, Iqbal A, Tariq M, and Waheed A (2011). Antimicrobial peptides: an alternative of antibiotics in ruminants. Adv Agric Biotechnol. 2: 15-21

Chevallereau, A., Pons, B. J., van Houte, S., & Westra, E. R. (2022). Interactions between bacterial and phage communities in natural environments. Nature Reviews Microbiology, 20(1), 49-62.

Datta, S., & Roy, A. (2021). Antimicrobial peptides as potential therapeutic agents: a review. International Journal of Peptide Research and Therapeutics, 27, 555-577.

Dwidar M, Monnappa AK, Mıtchell RJ (2012). The Dual Probiotic and Antibiotic Nature of Bdellovibrio Bacteriovorus. Biosensors and Bioelectronics. 15(1-2): 23-30.

Edens FW (2003). An alternative for antibiotic use in poultry: probiotics. Rev Bras Cienc Avic. 5(2): 1-17.

Ergin-Kaya S, Fılazı A (2010). Determination of antibiotic residues in milk samples. Kafkas Univ Vet Fak Derg. 16(Suppl-A): S31-5.

Filazi A, Yurdakok-Dikmen B, Kuzukıran O (2015). Antibiotic resistance in poultry. Turkiye Klinikleri J Vet Sci-Pharmacology and Toxicology-Special Topics. 1(2): 42-51.

Filazi A, Yurdakok-Dikmen B (2019). Alternative Approahes to Antimicrobials. Frontier in Clinical Drug Research. Vol 5: 111-157.

Filazi A, Sireli UT, Yurdakok B, Aydın FG, Kucukosmanoglu AG (2014). Depletion of florfenicol and florfenicol amine residues in chicken eggs. Br Poult Sci. 55(4): 460-5.

Ghosh, C., Sarkar, P., Issa, R., & Haldar, J. (2019). Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends in microbiology, 27(4), 323-338.

Gravitz L (2012). Turning a new phage. Nat. Med. 18: 1318–1320

Hanchi H, Hammami R, Gingras H, Kourda R, Bergeron MG, Ben Hamida J, ... ve Fliss I (2017). Inhibition of MRSA and of Clostridium difficile by durancin 61A: synergy with bacteriocins and antibiotics. Future microbiology. 12(3): 205-212.

Hancock, R. E., Alford, M. A., & Haney, E. F. (2021). Antibiofilm activity of host defence peptides: Complexity provides opportunities. Nature Reviews Microbiology, 19(12), 786-797.

Hofer, U (2019). The cost of antimicrobial resistance. Nature Reviews Microbiology, 17(1), 3-3.

Ince S, Fılazı A (2007). Bound residues. Turk Vet Hekim Bir Derg. 7: 79-85.

Johnson RP, Gyles CL, Huff WE, et al (2008). Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim Health Res Rev. 9(2): 201-15.

KAYA S (2014). Kemoterapotikler.Veteriner Farmakoloji. Ankara: Medisan Press Vol 5: 323-665kaya

Kaya S, Yavuz H, Akar F, Liman BC, Filazi A (1992). Antibiotic residues in meat, liver and kidney samples from slaughter cattle. Ankara Univ Vet Fak Derg. 39(1-2): 13-29.

Koskella, B., & Brockhurst, M. A. (2014). Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS microbiology reviews, 38(5), 916-931.

Laganenka, L., Sander, T., Lagonenko, A., Chen, Y., Link, H., & Sourjik, V. (2019). Quorum sensing and metabolic state of the host control lysogeny-lysis switch of bacteriophage T1. MBio, 10(5), e01884-19.

Lagha AB, Haas B, Gottschalk M ve Grenier D (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary research. 48(1): 22.

Laxminarayan R, Duse A, Wattal C, et al (2013). Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 13(12): 1057-98.

Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, ... ve Lewis K (2015). A new antibiotic kills pathogens without detectable resistance. Nature. 517(7535): 455-459.

Lu TK, Collins JJ (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA. 106(12): 4629-34.

Maura D, Debarbieux L (2011). Bacteriophages as twenty-first century antibacterial tools for food and medicine. Appl Microbiol Biotechnol. 90(3): 851-9.

Mukhopadhyay S, Prasad AB, Mehta CH ve Nayak UY (2020). Antimicrobial peptide polymers: No escape to ESKAPE pathogens—A review. World Journal of Microbiology and Biotechnology. 36(9): 1-14.

Nicco, C., Paule, A., Konturek, P., & Edeas, M. (2020). From donor to patient: collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation. Diseases, 8(2), 9.

Nishie M, Nagao J, Sonomoto K (2012). Antibacterial peptides ‘bacteriocins’: overview of their diverse characteristics and applications. Biocontrol Sci. 17(1): 1-16. [http://dx.doi.org/10.4265/bio.17.1] [PMID: 22451427]

Nollet L (2005). AGP alternatives-part I. EU close to a future without antibiotic growth promoters. World Poult. 21(6): 14-5.

OECD.(2018). ‘Stopping Antimicrobial Resistance Would Cost USD 2 per person a year’. (Access Date: 27.05.2023). https://www.oecd.org/newsroom/stopping-antimicrobial-resistance-would-cost-just-usd-2-per-person-a-year.html

Onbasili D, Yuvali-Çelik G, Turk-Katırcıoglu H (2020). ERÜ Sağlık Bilimleri Fakültesi Dergisi. 7(1): 51-57.

Park Sc, Park Y, Hahm Ks (2011). The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. International journal of molecular sciences. 12(9): 5971-5992.

Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN, Jurkevitch E (2013). By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J 2013. 7(4): 756-69. [http://dx.doi.org/10.1038/ismej.2012.149] [PMID: 23190728]

Projan SJ, Shlaes DM (2004). Antibacterial drug discovery: is it all downhill from here? Clin Microbiol Infect. 10 (Suppl. 4): 18-22.

Reardon S (2014). Antibiotic resistance sweeping developing world. Nature. 509(7499): 141-2.

Reardon S (2015). Dramatic rise seen in antibiotic use http://www.nature.com/news/dramatic-rise-seen-[http://dx.doi.org/10.1038/nature.2015.18383]

Ricke SC, Kundinger MM, Miller DR, Keeton JT (2005). Alternatives to antibiotics: chemical and physical antimicrobial interventions and foodborne pathogen response. Poult Sci. 84(4): 667-75.

Rios AC, Moutinho CG, Pinto FC et al (2016). Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol Res. 191: 51-80.

Rodríguez-Rubio L, Martínez B, Rodríguez A, Donovan DM, Gotz F, García P (2013). The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance. PLoS One. 8(5): e64671.

Sekkin S, Kum C (2011). Antibacterial drugs in fish farms: Application and its effects. Recent Advances in Fish Farms. Croatia: InTech. Pp: 217-50.

Setiarto, R. H. B., Anshory, L., & Wardana, A. A. (2023, April). Biosynthesis of nisin, antimicrobial mechanism and its applications as a food preservation: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 1169, No. 1, p. 012105). IOP Publishing.

Sørensen MC, Gencay YE, Birk T et al (2015). Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages. PLoS One. 10(1): e0116287.

Snyder Ab, Worobo Rw (2014). Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. Journal of the Science of Food and Agriculture. 94(1): 28-44.

Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM (2012). Probiotics/direct fed microbials for Salmonella control in poultry. Food Res Int. 45(2): 628-33.

Thakur, A., Sharma, A., Alajangi, H. K., Jaiswal, P. K., Lim, Y. B., Singh, G., & Barnwal, R. P. (2022). In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. International Journal of Biological Macromolecules.

Uppu Ds, Ghosh C, Haldar J (2015). Surviving sepsis in the era of antibiotic resistance: Are there any alternative approaches to antibiotic therapy? Microbial pathogenesis. 80: 7-13.

Ural K, Erdogan H, Adak HI et al (2019). Ataksik Kedilerde Fekal Mikrobiyata Transplantasyonu. MAKÜ Veteriner Fakültesi Dergisi. 4(1): 34-36.

Valerio N, Oliveira C, Jesus V, Branco T, Pereira C, Moreirinha C, Almeida A (2017). Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Research. http://dx.doi.org/10.1016/j.virusres.2017.07.015

Wittebole X , Roock S, Opal Sm (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 5: 1.

World Organization For Animal Health (OIE) (2016). Chapter 6. Responsible and prudent use of antimicrobial agents in veterinary medicine. Terrestrial Animal Health Code. http://www.oie.int/internationalstandard-setting/terrestrial-code/access-online/ [cited: 24th October 2016].

Yeung At, Gellatly Sl, Hancock Re (2011). Multifunctional cationic host defence peptides and their clinical applications. Cellular and Molecular Life Sciences. 68(13): 2161.

Zhu, Y., Hao, W., Wang, X., Ouyang, J., Deng, X., Yu, H., & Wang, Y. (2022). Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug‐resistant infections. Medicinal Research Reviews, 42(4), 1377-1422.

Downloads

Published

2023-12-31

How to Cite

Cagmel Turhal, B., & Filazi, A. (2023). Alternative Approaches to Antimicrobials. ICONTECH INTERNATIONAL JOURNAL, 7(4), 35–46. https://doi.org/10.5281/zenodo.8130926

Issue

Section

Articles