Quantum Chemical Characterization of 4-({4-[Bis(2-Cyanoethyl)Amino]Phenyl}Diazinyl)Benzene Sulfonamide by Ab-Initio Calculation


  • Arini Qurrata Ayun Pamukkale University, Science Faculty, Department of Physics, Denizli, Türkiye
  • Pinar Tunay Tasli Pamukkale University, Science Faculty, Department of Physics, Denizli, Türkiye
  • Hasan Huseyin Kart Aydın Adnan Menderes University, Science Faculty, Department of Physics, Aydın, Türkiye
  • Sevgi Ozdemir Kart Pamukkale University, Science Faculty, Department of Physics, Denizli, Türkiye




Density functional theory, UV-Vis absorption, electronic properties, azo dye, chemical shifts


4-({4-[Bis(2-cyanoethyl)amino]phenyl}diazinyl)benzene sulfonamide is the azo dye material which has general application in the textile industry.  Experimentally, it has been synthesized and geometrically characterized by G. Gervasio et al. In this study, the theoretical analysis has been calculated by using the ab-initio method based on the Density Functional Theory/B3LYP/6-311G(d,p) to characterize the structural, spectroscopy, and electronic properties of the title azo dye. Its molecular geometries are in good agreement with those of available experimental data. 129 vibrational modes have been specified with stretching, in-plane-bending, out-of-plane-bending, and torsion vibration modes by the Potential energy Distribution analysis. The ultraviolet spectra appear in a single peak for six common solvation at 429 nm. The Gauge-Invariant Atomic Orbital approach has been applied to predict the chemical shifts of 1H and 13C NMR only in DMSO solvation. The electronic properties have been investigated such as the energy bandgap (3.34 eV), ionization potential energy (6.24 eV), electron affinity (2.90 eV), electronegativity (4.57 eV), and chemical hardness (1.67 eV) by using the Frontier Molecular Orbital Theory from the energy interaction of the Lowest Unoccupied Molecular Orbital and Highest Occupied Molecular Orbital. The characterization of the title azo dye is conducted theoretically for the first time in this study.


Ziarani GM, Moradi R, Lashgari N, G.Kruger H. Azo Dyes. In: Metal-Free Synthetic Organic Dyes. ELSEVIER; 2018:47-93. doi:https://doi.org/10.1016/B978-0-12-815647-6.00004-2

Kunz A, Oberhof N, Scherz F, Martins L, Dreuw A, Wegner HA. Azobenzene-Substituted Triptycenes: Understanding the Exciton Coupling of Molecular Switches in Close Proximity. Chem - A Eur J. 2022;28(e202200972):1-6. doi:10.1002/chem.202200972

Ali Y, Hamid SA, Rashid U. Biomedical Applications of Aromatic Azo Compounds. Natl Libr Med Natl Cent Biotechnol Inf. 2018;10(3):107778.

Liu X, Liang M, Liu M, et al. Highly Efficient Catalysis of Azo Dyes Using Recyclable Silver Nanoparticles Immobilized on Tannic Acid-Grafted Eggshell Membrane. springerOpen. 2016;11(440).

Asifa MF, Banob R, Farooq R, et al. Shedding light on the second order nonlinear optical responses of commercially available acidic azo dyes for laser applications. Dye Pigment ELSEVIER. 2022;202(110284). doi:https://doi.org/10.1016/j.dyepig.2022.110284

Alsantali RI, Raja QA, Alzahrani AYA, et al. Miscellaneous azo dyes: a comprehensive review on recent advancements in biological and industrial applications. Dye Pigment ELSEVIER. 2022;199(110050). doi:https://doi.org/10.1016/j.dyepig.2021.110050

Huang Y, Ye Q, Li J, Zheng M, Yan B. Preparation of a redox mediator membrane and its application to catalyzing biodegradation of azo dyes. J Environ Chem Eng ELSEVIER. 2022;10(3):107778. doi:https://doi.org/10.1016/j.jece.2022.107778

Gervasio G, Marabello D, Bertolotti F. 4-({4-[Bis(2-cyanoethyl)amino]phenyl}diazenyl)benzenesulfonamide. Acta Crystallogr Sect E. 2010;E67(December):1600-5368. doi:10.1107/S1600536810053158

Lewars EG. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. (Lewars E, ed.).; 2011. doi:10.1007/978-90-481-3862-3

Åstrand PO, Bak KL, Sauer SP. Ab initio calculations on 2-imidazolyl-2-thiazolyl azo compounds – an investigation of potential near-infrared absorbing structures. Chem Phys Lett. 2001;343(1-2):171-177. doi:https://doi.org/10.1016/S0009-2614(01)00673-X

Funar-Timofei S, Fabian WMF, Kurunczi L, Goodarzi M, Ali ST, Heydend Y Vander. Modelling heterocyclic azo dye affinities for cellulose fibres by computational approaches. Dye Pigment ELSEVIER. 2012;94(2):278-289. doi:https://doi.org/10.1016/j.dyepig.2012.01.015

Atay ÇK, Kart SÖ, Gökalp M, Tuğrul Ö, Tilki T. Characterization and absorption properties of newly synthesized mono azo dyes: Experimental and theoretical approach. J Mol Struct. 2019;1180:251-259. doi:https://doi.org/10.1016/j.molstruc.2018.11.108

Tasli PT, Atay ÇK, Demirturk T, Tilki T. Experimental and computational studies of newly synthesized azo dyes based materials. J Mol Struct. 2020;1201:127098. doi:https://doi.org/10.1016/j.molstruc.2019.127098

R M, S K. Data depth approach in fitting linear regression models. In: Materialstoday: Proceedings. ; 2022:2212-2215. doi:https://doi.org/10.1016/j.matpr.2021.12.321

Pavia DL, Lampman GM, Kriz GS, R.Vyvyan J. Introduction to Spectroscopy. 5th ed. Nelson Education; 2015. doi:10.1201/b21879-2

Trani F, Scalmani G, Zheng G, Carnimeo I, Frisch M, Barone V. Time-Depent Density Functional Tight Binding: New Formulation and Benchmark of Excited States. J Chem Educ Comput. 2011;7(10):3304-3313. doi:https://dx.doi.org/10.1021/ct200461y

Basis Sets Gaussian. Expanding the Limits of Computational Chemistry. Published 2021. https://gaussian.com/basissets/

Seeman JI. Kenichi Fukui, Frontier Molecular Orbital Theory, and the Woodward-Hoffmann Rules. Part II. A Sleeping Beauty in Chemistry†**. Vol 22.; 2022. doi:10.1002/tcr.202100300

Axel D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev Am Phys Soc. 1988;A38(3098). doi:https://doi.org/10.1103/PhysRevA.38.3098

Lee TD, Yang CN. Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics. Phys Rev Am Phys Soc. 1957;105(3). doi:doi:10.1103/physrev.105.1119

Cincinnati. Software in Chem-Bio Library. Published 2021. https://guides.libraries.uc.edu/c.php?g=222784&p=1473460

Frisch MJ. Gaussian 09. Published online 2016. https://gaussian.com/g09citation/

Beşergil B. FTIR Absorpsiyon Spektroskopisi (FTIR absorption spectroscopy). Published 2022. http://bilsenbesergil.blogspot.com/p/8_44.html

Jamróz MH. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Vibrational energy distribution analysis ( VEDA ): Scopes and limitations. Spectrochim Acta Part A Mol Biomol Spectrosc ELSEVIER. 2013;114:220-230. doi:10.1016/j.saa.2013.05.096

Vibrational Frequency Scaling Factors.; 2022. https://cccbdb.nist.gov/vsfx.asp

Tomilin F, Rogova A, Kaufman E, Drevolsky A, Gerasimova M, Slyusareva E. Solvent effect in the theoretical absorption and emission spectra of fluorescein dyes. Published online 2019:29. doi:10.1117/12.2548739

Naser naser A, Musa MK, Hussein AA, Saleh ZK. Solvent effects on the electronic absorption spectra of Thymol. Chem Educ. 2015;20:176-182. doi:10.1080/00387018808082360

Wolinski K, Haacke R, Hinton JF, Pulay P. Methods for parallel computation of SCF NMR chemical shifts by GIAO method: Efficient integral calculation, multi-Fock algorithm, and pseudodiagonalization. J Comput Chem. 1998;18(6):816-825. doi:https://doi.org/10.1002/(SICI)1096-987X(19970430)18:6<816::AID-JCC7>3.0.CO;2-V

Spivey AC. Advanced Chemistry Topics 1 – Pericyclic Reactions LECTURE 4 The Frontier Molecular Orbital ( FMO ) Approach Format & Scope of Lecture 4.; 2022. https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/spivey-group/teaching/pericyclic-reactions/2122---Lecture-4---The-FMO-Approach---All-Parts.pdf

Tawada Y, Tsuneda T, Yanagisawa S. A long-range-corrected time-dependent density functional theory. J Chem Phys. 2004;120(8425):113-8656. doi:https://doi.org/10.1063/1.1688752

Guido C, Capraseccar S. How to perform corrected Linear Response calculations in G09 Corrected Linear Response State-specific correction to solvent polarization response Usage in Gaussian. Mol Pisa. 2016;(March):1-7. doi:10.13140/RG.2.1.1903.7845

Metin Balci. Chemical Shift. In: Basic 1H- and 13C-NMR Spectroscopy. ; 2005:25-85.

Vaníček J, Begušić T. Ab Initio Semiclassical Evaluation of Vibrationally Resolved Electronic Spectra With Thawed Gaussians. In: Molecular Spectroscopy and Quantum Dynamics. ; 2021:199-229. doi:https://doi.org/10.1016/B978-0-12-817234-6.00011-8

Hsu SL, Patel J, Zhao W. Vibrational Spectroscopy of Polymers. In: Molecular Characterization of Polymers A Fundamental Guide. ; 2021:369-407. doi:https://doi.org/10.1016/B978-0-12-819768-4.00010-5

Lauro C di. Expansion and Transformations of the Vibration-Rotation Hamiltonian. In: Rotational Structure in Molecular Infrared Spectra. 2nd ed. ; 2020:97-107. doi:https://doi.org/10.1016/B978-0-12-821336-0.00006-7

Michał H.Jamróz, Warsaw. Vibrational Energy Distribution Analysis (VEDA). Published online 2010. https://smmg.pl/software/veda

Gauglitz G, Vo-Dinh T. Handbook of Spectroscopy. Wiley-VCH; 2002.

The Beer Lambert Law. EDINBURGH Instruments. Published 2022. https://www.edinst.com/us/blog/the-beer-lambert-law/

Beauchamp P. Infrared Tables (short summary of common absorption frequencies). Course Notes. 2010;2620:19.

Beşergil B. Nükleer Magnetik Rezonans; Tanımlar (NMR; definitions). Published 2022. http://bilsenbesergil.blogspot.com/p/blog-page_588.html

Singh MK, Singh A. Nuclear magnetic resonance spectroscopy. In: Characterization of Polymers and Fibers The Textile Industrial Book Series. WP Woodhead Publishing; 2022:321-339. doi:https://doi.org/10.1016/B978-0-12-823986-5.00011-7

Carreras HZ. NMR SPectroscopy Principles, Interpreting an NMR Spectrum and Common Problems. Technology Networks Analysis and Separations. Published 2021. https://www.technologynetworks.com/analysis/articles/nmr-spectroscopy-principles-interpreting-an-nmr-spectrum-and-common-problems-355891

Metin Balci. Basic 1H- and 13C-NMR Spectroscopy. 1st ed.; 2005.

E.Crowley T. Nuclear magnetic resonance spectroscopy. In: Purification and Characterization of Secondary Metabolites A Laboratory Manual for Analytical and Structural Biochemistry. Academic Press; 2020:67-78. doi:https://doi.org/10.1016/B978-0-12-813942-4.00007-3

Antony ID, Kores JJJ, Sasitha T, Jebaraj JW. DFT, NBO, HOMO-LUMO, NCI, stability, Fukui function and hole – Electron analyses of tolcapone. Comput Theor Chem. 2021;1202:113296. doi:https://doi.org/10.1016/j.comptc.2021.113296

Salami N, Shokri A. Electronic structure of solids and molecules. In: Interface Science and Technology. ; 2021:325-373. doi:https://doi.org/10.1016/B978-0-12-818806-4.00002-4

Pilli SR, Banerjee T, Mohanty K. HOMO–LUMO energy interactions between endocrine disrupting chemicals and ionic liquids using the density functional theory: Evaluation and comparison. J Mol Liq ELSEVIER. 2015;207:112-124. doi:https://doi.org/10.1016/j.molliq.2015.03.019Get

Musia∤ M, Cembrzyńska J, Meissner L. Potential Energy Curves via Double Ionization Potential Calculations: Example of HF Molecule. In: Advance in Quantum Chemistyr. ; 2014:153-172. doi:https://doi.org/10.1016/B978-0-12-800536-1.00008-3

Bassi H, Shah N, Chu S, Clark J, Clark J. Electron Affinity. Chemistry LibreText. Published 2022. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Electron_Affinity

Clark J, Bank R. Electronegativity. Chemistry LibreText. Published 2021. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Electronegativity

Kaya S, Kaya C. A new method for calculation of molecular hardness: A theoretical study. Comput Theor Chem. 2015;1060:66-70. doi:10.1016/j.comptc.2015.03.004

Perez P, Domingo LR, Aizman A, Contreras R. The Electrophilicity Index in Organic Chemistry. Theor Comput Chem. 2007;19:139-201. doi:10.1016/S1380-7323(07)80010-0




How to Cite

Ayun, A. Q., Tasli, P. T. ., Kart, H. H. ., & Kart, S. O. . (2022). Quantum Chemical Characterization of 4-({4-[Bis(2-Cyanoethyl)Amino]Phenyl}Diazinyl)Benzene Sulfonamide by Ab-Initio Calculation. ICONTECH INTERNATIONAL JOURNAL, 6(3), 12–29. https://doi.org/10.46291/ICONTECHvol6iss3pp12-29