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ABSTRACT 

Recently, the concept of Ƒ metric space has been introduced and have been defined a natural 
topology in this spaces by Jleli and Samet[1]. Furthermore, a new style of Banach contraction 
principle has been given in the Ƒ metric spaces. In this paper, we prove some coincidence and 
common fixed point theorems in Ƒ metric spaces.  
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PRELIMINARIES, BACKGROUND AND NOTATION 

Lately, some authors have given various generalizations of metric spaces. This situation allows 
authors to find new work areas. Czerwik [2] described the concept of 𝑏𝑏‒metric. Khamsi and 
Hussain [3] reintroduced the 𝑏𝑏‒metric concept and they called it metric-type. Fagin et al. [4] 
presented the concept of s‒relaxedp metric. Here, 𝑏𝑏‒metric concept is more general than s‒
relaxedp metric concept [5]. G..ahler [6] began the concept of a 2‒metric. This metric function 
defined on the product set 𝑋𝑋 × 𝑋𝑋 × 𝑋𝑋. The notion of 2‒metric is a generalization of the concept 
of usual metric. Mustafa and Sims [7] introduced the notion of 𝒢𝒢‒metric space. The notion is 
more general than the usual metric space. Matthews [8] defined the concept of a partial metric. 
Jleli and Samet [9] introduced the notion of JS‒metric. Third condition of this metric gaves by 
lim sup ‒ condition. Currently, Jleli and Samet [10] have introduced the Ƒ-metric space concept. 
After that Alnaser et al. [11] defined relation theoretic contraction and proved some generalized 
fixed point theorems in this metric spaces. In this work, we give some fixed point theorems in 
Ƒ-metric spaces, some examples provide the theorems. Also, we prove some common fixed 
point theorems in the spaces.  

Definition 1 Let Ƒ be the set of functions 𝑔𝑔: (0,∞) → ℝ. This function provides the following 
conditions. 

Ƒ1 : 𝑔𝑔 is non-decreasing function 

Ƒ2 : lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 = 0 ⇔ lim
𝑛𝑛→∞

𝑔𝑔(𝑎𝑎𝑛𝑛) = −∞, for every sequence {𝑎𝑎𝑛𝑛} ⊆ (0 +∞) [1]. 
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Definition 2 Let 𝑋𝑋 ≠ ∅, 𝐷𝐷:𝑋𝑋 × 𝑋𝑋 → [0,∞) be a given mapping and there exists 𝑔𝑔 ∈ Ƒ and 𝛾𝛾 ∈
[0,∞). If the following conditions are satisfied, then 𝐷𝐷 is called as an  Ƒ -metric on 𝑋𝑋. The pair 
(𝑋𝑋,𝐷𝐷) is called as an Ƒ -metric space. 

𝐷𝐷 1 : (𝑎𝑎, 𝑏𝑏) ∈ 𝑋𝑋 × 𝑋𝑋,𝐷𝐷(𝑎𝑎, 𝑏𝑏) = 0 ⇔ 𝑎𝑎 = 𝑏𝑏,  

𝐷𝐷 2 : 𝐷𝐷(𝑎𝑎, 𝑏𝑏) = 𝐷𝐷(𝑏𝑏,𝑎𝑎) for all 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋, 

𝐷𝐷 3 : For every 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋, for every 𝑛𝑛 ∈ ℕ, 𝑛𝑛 ≥ 2 and for every (𝑡𝑡𝑖𝑖)𝑖𝑖=1𝑛𝑛 ⊂  𝑋𝑋  with  

(𝑡𝑡1, 𝑡𝑡𝑛𝑛0) = (𝑎𝑎, 𝑏𝑏) we have 𝐷𝐷(𝑎𝑎, 𝑏𝑏) > 0 ⇒ 𝑔𝑔(𝐷𝐷(𝑎𝑎, 𝑏𝑏)) ≤ 𝑔𝑔(Σ𝑖𝑖=1𝑛𝑛−1𝐷𝐷((𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1)) + 𝛾𝛾 [1]. 

Remark 3 Any metric space is an Ƒ-metric space. The converse of this proposition is false 
[1]. 

Example 4 Let ℝ+ be the set of positive real numbers. 𝐷𝐷:ℝ+ × ℝ+ → [0,∞) be the mapping 
and for all 𝑎𝑎, 𝑏𝑏 ∈ ℝ+,     

𝐷𝐷(𝑎𝑎, 𝑏𝑏) = �
(|𝑎𝑎 − 𝑏𝑏|)2, 𝑎𝑎, 𝑏𝑏 ∈ [0,3]

|𝑎𝑎 − 𝑏𝑏|, 𝑎𝑎, 𝑏𝑏 ∉ [0,3]. 

Then 𝐷𝐷 is an Ƒ-metric with 𝑔𝑔(𝑎𝑎) = ln 𝑎𝑎 and 𝛾𝛾 = 𝑙𝑙𝑛𝑛3 [1]. 

Example 5 Let ℕ be the set of natural numbers, 𝐷𝐷:ℕ × ℕ → [0,∞) be the mapping and for 
all 𝑎𝑎, 𝑏𝑏 ∈ ℕ,   

𝐷𝐷(𝑎𝑎, 𝑏𝑏) = �𝑒𝑒𝑒𝑒𝑒𝑒(|𝑎𝑎 − 𝑏𝑏|), 𝑎𝑎 ≠ 𝑏𝑏
0, 𝑎𝑎 = 𝑏𝑏.  

Then 𝐷𝐷 is an Ƒ-metric with 𝑔𝑔(𝑎𝑎) = − 1
𝑎𝑎

, 𝑎𝑎 > 0 and 𝛾𝛾 = 1 [1]. 

Definition 6 Suppose that 𝐷𝐷 be an Ƒ-metric on 𝑋𝑋. Let {𝑎𝑎𝑛𝑛} be a sequence in 𝑋𝑋. 

i. If {𝑎𝑎𝑛𝑛} is convergent to element according to the Ƒ-metric 𝐷𝐷, then the sequence {𝑎𝑎𝑛𝑛} is 
Ƒ –convergent to element 𝑎𝑎. 

ii. If lim
𝑚𝑚,𝑛𝑛→∞

𝐷𝐷(𝑎𝑎𝑛𝑛,𝑎𝑎𝑚𝑚) = 0 then the sequence {𝑎𝑎𝑛𝑛} is Ƒ-Cauchy. 

iii. If every Ƒ-Cauchy sequence in 𝑋𝑋 is convergent, then (𝑋𝑋,𝐷𝐷) is Ƒ-complete [1]. 

Definition 7 Let T and S be self maps of a set X. If 𝑦𝑦 =  𝑇𝑇𝑒𝑒 =  𝑆𝑆𝑒𝑒 for some 𝑒𝑒 ∈ 𝑋𝑋 then 𝑦𝑦 is 
said to be a point of coincidence and 𝑒𝑒 is said to be a coincidence point of T and S. 

If 𝑒𝑒 =  𝑇𝑇𝑒𝑒 =  𝑆𝑆𝑒𝑒 for some 𝑒𝑒 ∈ 𝑋𝑋 then 𝑒𝑒 is said to be a common fixed point of T and S [10].  

Remark 8 If T and S are weakly compatible, that is, they are commuting at their coincidence 
point on X, then the point of coincidence y is the unique common fixed point of these maps 
[10]. 

Theorem 9 Let 𝑋𝑋 ≠ ∅, 𝐷𝐷 be an Ƒ-metric on 𝑋𝑋 and 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 be a given mapping. Assume that 
the Ƒ-metric space (𝑋𝑋,𝐷𝐷) is Ƒ-complete and there exists 𝛼𝛼 ∈ (0,1) such that 𝐷𝐷(𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑏𝑏)) ≤
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𝛼𝛼𝐷𝐷(𝑎𝑎, 𝑏𝑏) for 𝑎𝑎, 𝑏𝑏 ∈  𝑋𝑋. Then 𝑓𝑓 has a unique fixed point 𝑎𝑎∗ ∈  𝑋𝑋. Furthermore, the sequence 
{𝑎𝑎𝑛𝑛} ⊂  𝑋𝑋 defined by 𝑎𝑎𝑛𝑛+1 = 𝑓𝑓(𝑎𝑎𝑛𝑛), 𝑛𝑛 ∈ ℕ  is Ƒ-convergent to 𝑎𝑎∗, for any 𝑎𝑎0 ∈  𝑋𝑋 [1]. 

MAIN RESULTS 

In this section, we give generalizations of some known fixed point theorems in the setting of 
the Ƒ-metric spaces. 

Theorem 10 Let 𝑋𝑋 ≠ ∅, 𝐷𝐷 be an Ƒ-metric on 𝑋𝑋. Assume the two mappings S, T:𝑋𝑋 → 𝑋𝑋 satisfies 
the following conditions 

i. For all 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋, 𝐷𝐷(𝑇𝑇(𝑎𝑎),𝑇𝑇(𝑏𝑏)) ≤ 𝑘𝑘.𝑢𝑢(𝑎𝑎, 𝑏𝑏) where 0 ≤ 𝑘𝑘 < 1  is a constant and  

𝑢𝑢(𝑎𝑎, 𝑏𝑏) ∈ {𝐷𝐷(𝑆𝑆𝑎𝑎, 𝑆𝑆𝑏𝑏),𝐷𝐷(𝑆𝑆𝑎𝑎,𝑇𝑇𝑎𝑎),𝐷𝐷(𝑆𝑆𝑏𝑏,𝑇𝑇𝑏𝑏), 1
2

[𝐷𝐷(𝑆𝑆𝑎𝑎,𝑇𝑇𝑏𝑏) + 𝐷𝐷(𝑆𝑆𝑏𝑏,𝑇𝑇𝑎𝑎)]}, 

ii. 𝑇𝑇(𝑋𝑋) ⊂ S(X), 
iii. 𝑇𝑇(𝑋𝑋) or S(X) be Ƒ-complete subspace of  𝑋𝑋. 

Then 𝑇𝑇 and S have a unique point of coincidence in 𝑋𝑋.  

Moreover, if 𝑇𝑇 and S  are weakly compatible, then they have a unique common fixed point 
in 𝑋𝑋. 

Proof Let 𝑔𝑔 ∈  Ƒ , γ ∈  [0,∞) be such that for every 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋 for every 𝑛𝑛 ∈ ℕ, 𝑛𝑛 ≥ 2 and for 
every (𝑡𝑡𝑖𝑖)𝑖𝑖=1𝑛𝑛 ⊂  𝑋𝑋 with (𝑡𝑡1, 𝑡𝑡𝑛𝑛0) = (𝑎𝑎, 𝑏𝑏), we have  

𝐷𝐷(𝑎𝑎, 𝑏𝑏) > 0 ⇒ 𝑔𝑔(𝐷𝐷(𝑎𝑎, 𝑏𝑏)) ≤ 𝑔𝑔(Σ𝑖𝑖=1𝑛𝑛−1𝐷𝐷((𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1)) + 𝛾𝛾. 

From Ƒ2, for every sequence 𝑎𝑎𝑛𝑛 ⊆ (0, +∞), there exists a 𝛿𝛿 > 0 such that 𝑛𝑛 → ∞ 
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 = 0 ⇔ lim
𝑛𝑛→∞

𝑔𝑔(𝑎𝑎𝑛𝑛) = −∞ and 0 < 𝑎𝑎 < 𝛿𝛿 ⇒ 𝑔𝑔(𝑎𝑎) < 𝑔𝑔(𝛿𝛿) − 𝛾𝛾. 

Let 𝑎𝑎0, 𝑎𝑎1 ∈ 𝑋𝑋 be arbitrary and {𝑎𝑎𝑛𝑛} ⊂ 𝑋𝑋 be the sequence defined by 𝑆𝑆𝑎𝑎𝑛𝑛+1=𝑇𝑇𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛 for 𝑛𝑛 ∈
ℕ. We have that  

𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1)= 𝐷𝐷(𝑇𝑇𝑎𝑎𝑛𝑛,𝑇𝑇𝑎𝑎𝑛𝑛+1) ≤ 𝑘𝑘.𝑢𝑢(𝑎𝑎𝑛𝑛,𝑎𝑎𝑛𝑛+1), for all 𝑛𝑛 ∈ ℕ. …* 

Now, we have to consider the following cases, 

If 𝑢𝑢(𝑎𝑎𝑛𝑛, 𝑎𝑎𝑛𝑛+1) = 𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛) then clearly (*) holds. 

If 𝑢𝑢(𝑎𝑎𝑛𝑛, 𝑎𝑎𝑛𝑛+1) = 𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1) then 𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1) = 0 and (*) is immediate. 

Finally, suppose that 𝑢𝑢(𝑎𝑎𝑛𝑛,𝑎𝑎𝑛𝑛+1) = 1
2
𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛+1).  

Then,  

𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1) ≤
𝑘𝑘
2

.𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛+1) ≤
𝑘𝑘
2

.𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛) +
1
2

.𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1) 

Holds, and we prove (*). 

We have  
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𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1) ≤ 𝑘𝑘𝑛𝑛𝐷𝐷(𝑏𝑏0, 𝑏𝑏1). 

Thus for all 𝑛𝑛 and 𝑒𝑒, 

 𝐷𝐷�𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+𝑝𝑝� ≤ 𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1) + 𝐷𝐷(𝑏𝑏𝑛𝑛+1, 𝑏𝑏𝑛𝑛+2) + ⋯+ 𝐷𝐷�𝑏𝑏𝑛𝑛+𝑝𝑝−1, 𝑏𝑏𝑛𝑛+𝑝𝑝� 

                         ≤ 𝑘𝑘𝑛𝑛 + 𝑘𝑘𝑛𝑛+1 + ⋯+ 𝑘𝑘𝑛𝑛+𝑝𝑝−1)𝐷𝐷(𝑏𝑏0, 𝑏𝑏1)  

                         ≤ 𝑘𝑘𝑛𝑛

1−𝑘𝑘
𝐷𝐷(𝑏𝑏0, 𝑏𝑏1)  

holds. 

Since lim
𝑛𝑛→∞

𝑘𝑘𝑛𝑛

1−𝑘𝑘
𝐷𝐷(𝑏𝑏0, 𝑏𝑏1) = 0, there exists a 𝑛𝑛0 ∈ ℕ such that 0 < 𝑘𝑘𝑛𝑛

1−𝑘𝑘
𝐷𝐷(𝑏𝑏0, 𝑏𝑏1) < 𝛿𝛿,   𝑛𝑛 ≥ 𝑛𝑛0. 

From conditions 0 < 𝑏𝑏 < 𝛿𝛿 ⇒ 𝑔𝑔(𝑏𝑏) < 𝑔𝑔(𝛿𝛿) − 𝛾𝛾 and 𝑔𝑔 is non-decreasing.  

𝑔𝑔(Σ𝑖𝑖=𝑛𝑛
𝑛𝑛+𝑝𝑝−1𝐷𝐷(𝑏𝑏𝑖𝑖 ,𝑏𝑏𝑖𝑖+1)) ≤ 𝑔𝑔( 𝑘𝑘𝑛𝑛

1−𝑘𝑘
𝐷𝐷(𝑏𝑏0, 𝑏𝑏1)) < 𝑔𝑔(𝛿𝛿) − 𝛾𝛾, 𝑛𝑛 ≥ 𝑛𝑛0 ….** 

Using conditions (𝐷𝐷3) and (**),  

𝐷𝐷�𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+𝑝𝑝� > 0,𝑛𝑛 ≥ 𝑛𝑛0 ⇒ 𝑔𝑔(𝐷𝐷�𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+𝑝𝑝�) ≤ 𝑔𝑔(Σ𝑖𝑖=𝑛𝑛
𝑛𝑛+𝑝𝑝−1𝐷𝐷(𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑖𝑖+1)) + 𝛾𝛾 < 𝑔𝑔(𝛿𝛿). 

Thus we obtain that 𝐷𝐷�𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+𝑝𝑝� < 𝛿𝛿,𝑛𝑛 ≥ 𝑛𝑛0 by (Ƒ1). It is seen that this sequence {𝑏𝑏𝑛𝑛} is an 
Ƒ −Cauchy. 

Since the range of 𝑆𝑆 contains the range of 𝑇𝑇 and the range of at least one is Ƒ-complete, there 
exists a 𝑐𝑐 ∈ 𝑆𝑆(𝑋𝑋) such that lim

𝑛𝑛→∞
𝐷𝐷(𝑆𝑆𝑎𝑎𝑛𝑛, 𝑐𝑐) = 0. Hence there exists a sequence (𝑒𝑒𝑛𝑛) in [0, + ∞) 

such that 𝑒𝑒𝑛𝑛 → 0 and 𝐷𝐷(𝑆𝑆𝑎𝑎𝑛𝑛, 𝑐𝑐) ≤ 𝑒𝑒𝑛𝑛. On the other hand, we can find 𝑑𝑑 ∈ 𝑋𝑋 such that 𝑆𝑆𝑑𝑑 = 𝑐𝑐. 
Let us show that 𝑇𝑇𝑑𝑑 = 𝑐𝑐. We suppose that 𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐) > 0.  

From the condition (𝐷𝐷3),  

𝑔𝑔(𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐)) ≤ 𝑔𝑔(𝐷𝐷(𝑇𝑇𝑑𝑑,𝑇𝑇𝑏𝑏𝑛𝑛)) + 𝐷𝐷(𝑇𝑇𝑏𝑏𝑛𝑛, 𝑐𝑐) + 𝛾𝛾, 𝑛𝑛 ∈ ℕ. 

Using condition of theorem and 𝑔𝑔 is non-decreasing,  

𝑔𝑔(𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐)) ≤ 𝑔𝑔[𝑘𝑘(𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐) + 2𝐷𝐷(𝑇𝑇𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛) + 𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑐𝑐))] + 𝛾𝛾, 𝑛𝑛 ∈ ℕ. 

Otherwise, using lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 = 0 ⇔ lim
𝑛𝑛→∞

𝑔𝑔( 𝑏𝑏𝑛𝑛) = −∞ and lim
𝑛𝑛→∞

[𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐) + 2𝐷𝐷(𝑇𝑇𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛) +

𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑐𝑐)] = 0,  we obtain that  

 lim
𝑛𝑛→∞

 𝑔𝑔(𝑘𝑘[𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐) + 2𝐷𝐷(𝑇𝑇𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛) + 𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑐𝑐)]) + 𝛾𝛾=−∞. 

This is a contradiction. Consequently, 𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐) = 0 i.e. Td= 𝑐𝑐 and so 𝑐𝑐 is a point of 
coincidence of T and S. 

If 𝑐𝑐1 is another point of coincidence then there is 𝑑𝑑1 ∈ 𝑋𝑋 with T𝑑𝑑1 = S𝑑𝑑1 = 𝑐𝑐1. Therefore 

𝐷𝐷(𝑐𝑐, 𝑐𝑐1) = 𝐷𝐷(𝑇𝑇𝑑𝑑, T𝑑𝑑1) ≤ 𝑘𝑘𝑢𝑢(𝑑𝑑,𝑑𝑑1), where  
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𝑢𝑢(𝑑𝑑,𝑑𝑑1) ∈ {𝐷𝐷(𝑆𝑆𝑑𝑑, S𝑑𝑑1),𝐷𝐷(𝑆𝑆𝑑𝑑, T𝑑𝑑),𝐷𝐷(S𝑑𝑑1, T𝑑𝑑1),
1
2

[𝐷𝐷(𝑆𝑆𝑑𝑑, T𝑑𝑑1) + 𝐷𝐷(𝑆𝑆𝑑𝑑1,𝑇𝑇𝑑𝑑)]}

= {0,𝐷𝐷(𝑐𝑐, 𝑐𝑐1)}. 

Hence 𝐷𝐷(𝑐𝑐, 𝑐𝑐1) = 0 that is 𝑐𝑐 = 𝑐𝑐1. 

If T and S are weakly compatible, then it is obvious that z is unique common fixed point of T 
and S. 

Theorem 11 Let 𝑋𝑋 ≠ ∅, 𝐷𝐷 be an Ƒ-metric on 𝑋𝑋. Assume the two mappings S, T:𝑋𝑋 → 𝑋𝑋 satisfies 
the following conditions 

i. For all 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋, 𝐷𝐷(𝑇𝑇(𝑎𝑎),𝑇𝑇(𝑏𝑏)) ≤ 𝑘𝑘.𝑢𝑢(𝑎𝑎, 𝑏𝑏) where 0 ≤ 𝑘𝑘 < 1  is a constant and  

𝑢𝑢(𝑎𝑎, 𝑏𝑏) ∈ {𝐷𝐷(𝑆𝑆𝑎𝑎, 𝑆𝑆𝑏𝑏), 1
2

[𝐷𝐷(𝑆𝑆𝑎𝑎,𝑇𝑇𝑎𝑎) + 𝐷𝐷(𝑆𝑆𝑏𝑏,𝑇𝑇𝑏𝑏)], 1
2

[𝐷𝐷(𝑆𝑆𝑎𝑎,𝑇𝑇𝑏𝑏) + 𝐷𝐷(𝑆𝑆𝑏𝑏,𝑇𝑇𝑎𝑎)]}, 

ii. 𝑇𝑇(𝑋𝑋) ⊂ S(X), 
iii. 𝑇𝑇(𝑋𝑋) or S(X) be Ƒ-complete subspace of  𝑋𝑋. 

Then 𝑇𝑇 and S have a unique point of coincidence in 𝑋𝑋.  

Moreover, if 𝑇𝑇 and S  are weakly compatible, then they have a unique common fixed point 
in 𝑋𝑋. 

Proof Let 𝑔𝑔 ∈  Ƒ , γ ∈  [0,∞) be such that for every 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋 for every 𝑛𝑛 ∈ ℕ, 𝑛𝑛 ≥ 2 and for 
every (𝑡𝑡𝑖𝑖)𝑖𝑖=1𝑛𝑛 ⊂  𝑋𝑋 with (𝑡𝑡1, 𝑡𝑡𝑛𝑛0) = (𝑎𝑎, 𝑏𝑏), we have  

𝐷𝐷(𝑎𝑎, 𝑏𝑏) > 0 ⇒ 𝑔𝑔(𝐷𝐷(𝑎𝑎, 𝑏𝑏)) ≤ 𝑔𝑔(Σ𝑖𝑖=1𝑛𝑛−1𝐷𝐷((𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1)) + 𝛾𝛾. 

From Ƒ2, for every sequence 𝑎𝑎𝑛𝑛 ⊆ (0, +∞), there exists a 𝛿𝛿 > 0 such that 𝑛𝑛 → ∞ 
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 = 0 ⇔ lim
𝑛𝑛→∞

𝑔𝑔(𝑎𝑎𝑛𝑛) = −∞ and 0 < 𝑎𝑎 < 𝛿𝛿 ⇒ 𝑔𝑔(𝑎𝑎) < 𝑔𝑔(𝛿𝛿) − 𝛾𝛾. 

Let 𝑎𝑎0, 𝑎𝑎1 ∈ 𝑋𝑋 be arbitrary and {𝑎𝑎𝑛𝑛} ⊂ 𝑋𝑋 be the sequence defined by 𝑆𝑆𝑎𝑎𝑛𝑛+1=𝑇𝑇𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛 for 𝑛𝑛 ∈
ℕ. We have that  

𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1)= 𝐷𝐷(𝑇𝑇𝑎𝑎𝑛𝑛,𝑇𝑇𝑎𝑎𝑛𝑛+1) ≤ 𝑘𝑘.𝑢𝑢(𝑎𝑎𝑛𝑛,𝑎𝑎𝑛𝑛+1), for all 𝑛𝑛 ∈ ℕ. …* 

We first show that 𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1) ≤ 𝑘𝑘.𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛), for all 𝑛𝑛 ∈ ℕ. Notice that  

𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1) = 𝐷𝐷(𝑇𝑇𝑎𝑎𝑛𝑛,𝑇𝑇𝑎𝑎𝑛𝑛+1) ≤ 𝑘𝑘.𝑢𝑢(𝑎𝑎𝑛𝑛,𝑎𝑎𝑛𝑛+1), for all 𝑛𝑛 ∈ ℕ. 

As in the above theorem, we have to consider the following cases, 

If 𝑢𝑢(𝑎𝑎𝑛𝑛, 𝑎𝑎𝑛𝑛+1) = 𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛), 𝑢𝑢(𝑎𝑎𝑛𝑛, 𝑎𝑎𝑛𝑛+1) = 1
2

[𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛) + 𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1)] and 

𝑢𝑢(𝑎𝑎𝑛𝑛,𝑎𝑎𝑛𝑛+1) = 1
2
𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛+1).  

First and third have been shown in the proof of Theorem 2.1. Consider only the second case.  

If  𝑢𝑢(𝑎𝑎𝑛𝑛, 𝑎𝑎𝑛𝑛+1) = 1
2

[𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛) + 𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1)] ≤ 𝑘𝑘
2
𝐷𝐷(𝑏𝑏𝑛𝑛−1, 𝑏𝑏𝑛𝑛) + 1

2
𝐷𝐷(𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛+1).  

Hence (***) holds. 
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As in the proof of above theorem, we show that (𝑏𝑏𝑛𝑛) is an Ƒ −  Cauchy sequence. Then there 
exist 𝑐𝑐 ∈ 𝑆𝑆(𝑋𝑋), 𝑑𝑑 ∈ 𝑋𝑋 and (𝑒𝑒𝑛𝑛) in [0, + ∞) such that 𝑆𝑆𝑑𝑑 = 𝑐𝑐,𝐷𝐷(𝑆𝑆𝑎𝑎𝑛𝑛, 𝑐𝑐) ≤ 𝑒𝑒𝑛𝑛 , 𝑒𝑒𝑛𝑛 → 0.  We 
have 𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐) ≤ 𝐷𝐷(𝑇𝑇𝑑𝑑,𝑇𝑇𝑎𝑎𝑛𝑛) + 𝐷𝐷(𝑇𝑇𝑎𝑎𝑛𝑛, 𝑐𝑐) ≤ 𝑢𝑢(𝑎𝑎𝑛𝑛,𝑑𝑑) + 𝑒𝑒𝑛𝑛+1 for all 𝑛𝑛. 

Since 𝑢𝑢(𝑎𝑎𝑛𝑛,𝑑𝑑) ∈ {𝐷𝐷(𝑆𝑆𝑎𝑎𝑛𝑛, 𝑆𝑆𝑑𝑑), 1
2

[𝐷𝐷(𝑆𝑆𝑎𝑎𝑛𝑛,𝑇𝑇𝑎𝑎𝑛𝑛) + 𝐷𝐷(𝑆𝑆𝑑𝑑,𝑇𝑇𝑑𝑑)], 1
2

[𝐷𝐷(𝑆𝑆𝑎𝑎𝑛𝑛,𝑇𝑇𝑑𝑑) +

𝐷𝐷(𝑆𝑆𝑑𝑑,𝑇𝑇𝑎𝑎𝑛𝑛)]}, at least one of three cases holds for all n. Consider only the case of 𝑢𝑢(𝑎𝑎𝑛𝑛,𝑑𝑑) =
1
2

[𝐷𝐷(𝑆𝑆𝑎𝑎𝑛𝑛,𝑇𝑇𝑎𝑎𝑛𝑛) + 𝐷𝐷(𝑆𝑆𝑑𝑑,𝑇𝑇𝑑𝑑)] because the other two cases have shown that the proof of 

Theorem 2.1. It is satisfied that 

(𝑇𝑇𝑑𝑑, 𝑐𝑐) ≤
1
2

[𝐷𝐷(𝑆𝑆𝑎𝑎𝑛𝑛,𝑇𝑇𝑎𝑎𝑛𝑛) + 𝐷𝐷(𝑆𝑆𝑑𝑑,𝑇𝑇𝑑𝑑)] + 𝑒𝑒𝑛𝑛+1 

≤
1
2
𝐷𝐷(𝑆𝑆𝑎𝑎𝑛𝑛, 𝑐𝑐) +

1
2
𝐷𝐷(𝑇𝑇𝑎𝑎𝑛𝑛, 𝑐𝑐) +

1
2
𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐) + 𝑒𝑒𝑛𝑛+1 

≤
1
2
𝑒𝑒𝑛𝑛 +

1
2
𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐) +

3
2
𝑒𝑒𝑛𝑛+1 

≤
1
2
𝐷𝐷(𝑇𝑇𝑑𝑑, 𝑐𝑐) + 2𝑒𝑒𝑛𝑛, 

that is, (𝑇𝑇𝑑𝑑, 𝑐𝑐) ≤ 4𝑒𝑒𝑛𝑛.   Since 4𝑒𝑒𝑛𝑛 → 0, then 𝑇𝑇𝑑𝑑 = 𝑐𝑐. Hence, 𝑐𝑐 is a point of coincidence of T 
and S. The uniqueness of c as in the above. Also, if S and T are weakly compatible, then it is 
obvious that c is unique common fixed point of T and S. 
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