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Android application platform is making rapid progress in these days. 

This development has made it the target of malicious application 

developers. This situation provides a numerical increase in malware 

apps, diversity in techniques, and rise of damage. Therefore, it is very 

critical to detect these software and escalation the security of mobile 

users. Static and dynamic analysis, behaviour scrutiny, machine 

learning methods are used to ensure security. In this study, K-nearest 

Neighbourhood (KNN) classifier, one of the machine learning 

methods, is used. Thus, it is aimed to detect malignant mobile software 

successfully and quickly. The tests is conducted with dataset includes 

492 malware and 697 benign applications. In the proposed algorithm, 

neighbour number 5 and distance metric is preferred as Minkowski. 

80% of dataset randomly selected is reserved for training and 20% for 

testing. As a result, while 94.1% accuracy is achieved, precision 

91.2%, recall 92.7% recall and f1-measure is 92.4%. The high value 

obtained in f1-measure shows that the proposed model is successful in 

detecting both malware and benevolent software. The success of using 

KNN algorithm in classification of malicious apps in the Android has 

been demonstrated.  

 

INTRODUCTION 

Today mobile devices are more widely used than personal computers. The providing factors of 

this usage have been the convenience of the devices with their developing capacity and power, 

and portability. It is estimated that the number of mobile devices has increased by nearly twice 

as compared to 2014 [1]. Android operating system is one of the commonly used mobile OS 

leading this raise. This open source software managed by Google, is used in almost half of all 

mobile phones.  

The large user base has made mobile tools using Android OS the target of malicious 

cybercriminals. The proof of this situation is the high number of malwares, uploaded and 

published on Android application markets [2]. Besides, the variety of malicious software has 
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been constantly arising in the Android mobile networks, which poses a risk to end users. Unlike 

the IOS, users can download the applications from shared files in third-party distribution 

environments as well as the Play Store [1]. Malevolent application detection tools are needed 

to help Android users cope with these security problems. In order to develop these detection 

engines static, dynamic and hybrid analysis methods are preferred.   

Static analysis method is one of the main techniques used by commercial antivirus programs. 

In this approach, it is aimed to examine the code and structure of applications without having 

to install them on any mobile device. Execution schemes in the code are generated. Thus, it is 

determined whether the purpose of the application is to perform malicious activities. In order 

to carry out this process statically, application source code need to be obtained with reverse 

engineering methods.  This conversion was easy in the applications implemented with old API 

versions. However, reverse engineering is a difficult process due to modern compilers and 

libraries used in newly developed applications today. Moreover, many encryption, obfuscation 

and hiding code techniques that can be used by developers to prevent accessing original java 

and xml codes[3].   

Dynamic analysis approaches have been proposed in order to overcome the shortcomings of 

the static analysis [4-6]. The applications are installed and run in a sandbox or real environment 

in this method. Their behaviour is monitored during the working process. It is aimed to catch 

API calls, compare them with known actions and detect the malwares. Hiding or encryption 

techniques are not problem. In addition to being a successful approach in the examination and 

classification of apps, it has some problems. The main ones are the necessity to install and run 

on a mobile device, keeping track of running processes reduces the system performance and 

demands serious pre-processing stages. Hybrid approaches are recommended in which the 

advantageous points of static and dynamic analysis are used [7-9]. Thus more outstanding 

results were achieved.    

Mobile gadgets have limited resources due to their physical size. Accordingly, it is expected 

that the suggested malignant software detection software does not need much processing time. 

Therefore, machine learning techniques are widely preferred in these days and applied in certain 

types of decision making tasks. High success rate can be achieved for some problems [10, 11]. 

In the paper numbered by [12] conducted by Sunita et al, different classification algorithms 

such as KNN, Naive Bayes, SVM, J48 are used to detect malignant software. 

In this study, a model has been developed for acquiring features of mobile applications with the 

static code analysis and classifying them with KNN algorithm. Malicious software is detected 

using machine learning, and the following contributions are given to the literature.   

 Using proposed architecture, it is possible to specify malwares with an accuracy of 90% 

and above.  

 In order to be used in model training and testing, 697 benign and 492 malicious mobile 

software is collected and an up-to-date and genuine dataset is created.  
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 Using the KNN classifier, low cost and without the need for extra processing time, 

rewarding results can be attained quickly. 

 When comparing similar studies, better results were obtained with a relatively limited 

but original dataset.  

 Experiments is repeated and to prove reliability of the outcomes and it is shown that a 

certain level of performance is achieved in all cases.  

In the second part of this study, a literature review consist of the studies using KNN and other 

classification algorithms, is given. Next, in the Methodology section, data acquisition, getting 

relevant features from the Android apk files and classification process with KNN are discussed 

in detail. In the 4th part, the outcomes in the tests performed with the 1189 apps have been show 

exhaustively and evaluated comparatively with similar studies. Finally, In the light of the 

results, an overall evaluation and suggestions about the future are mentioned.  

RELATED WORKS 

There are many studies about detecting malware in the Android OS. One of the first 

determination regarding the weaknesses in Android and the malicious software that started to 

appear rapidly was made by Steve Manstifield [12].  In this research, it is predicted that the 

used of Android is becoming widespread, which will make it a target of cyber attacks. In 

addition, it is stated that Android architecture offers a good opportunity for malignant people 

due to its open source distribution and technical and procedural defects. Accordingly, it is 

explained that models that can protect users against malicious software should be urgently 

recommended and developed.   

In the study prepared by Mark et al in 2013 [13], a model in client-server architecture has been 

proposed that can be used to detect malicious apps installed on Android devices. In this model, 

the usage statistics of malignant programs are evaluated in a remote server system and the 

intention of the application is tried to be determined accordingly. It is a type of dynamic and 

behaviour analysis. Similarly, in the study evaluating the behaviours of the applications after 

installation [33],  to identify malicious attacks, an assessment based on popular malicious 

practices in this areas has been used.  

Due to the increasing number of malignant application in 2016, working on detection models 

of malwares has accelerated. The studies based on source code analysis in static analysis type 

[14-16], and Sandbox usage [17], client-server structure [18], behaviour based surveillance 

[19], API calls [20] monitoring researches in dynamic analysis were made. By using different 

approaches, it was tried to achieve more robust results and to increase the safety of mobile 

users.  

In recent years, the idea of using the features, derived from apps based on static and dynamic 

analysis, in classification and regression problems has been put forward. The development of 

machine learning techniques and the ability to come up with good results for many different 
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problems, adopted the idea of using it in this areas as well. In the article is prepared by Domhnall 

et al [21], 23 different machine learning algorithms have been tested on well known databases. 

During this testing period, classification performances, accuracy and CPU usage times were 

compared with accepted traditional methods. It is aimed to reveal a general opinion about the 

results of ML techniques on standard malware datasets. In the study [22] using the method of 

classifying the features obtained as a result of the analysis of the network usage traffic of mobile 

devices with ML, a very high success rate of 99.9% was achieved. Only usage statistics 

regarding network usage are used. In order to get features of apps, a pre-processing in the form 

of dynamic analysis was applied. Similarly, in the article written by Bahtiyar et al [23], it was 

tried to predict the malignant apps using multi-layered Stuxnet architecture. It uses regression 

models. Tests were carried out by creating a sample malignant software dataset. R2 value was 

found to be 0.8203. Thus, it has been shown that the proposed structure can produce acceptable 

outcomes.  

Many studies have been carried out for many years to detect malware, which is the nightmare 

of Android mobile users. Today, studies still continue actively in this field as we have done.  

MATERIAL AND METHODS 

Application permissions are the basis of security in the Android operating system. Therefore, 

many studies have been conducted to detect malevolent apps based on permission [25-27]. The 

permission requested by the applications both determine the areas of accessibility and draw the 

limits of their malicious activities. Considering this situation, in this study, it has been studied 

to get requested permissions, to transform this permission into features and to classify with 

KNN algorithm.  

Architecture of Proposed Model 

In order to design the proposed model, it is necessary to complete a number of pre-processing 

steps such as creating original dataset, extracting source codes and determining requested 

permission. The purpose of this process is to obtain the input feature vectors needed in the 

implementation of ML methods.   

Reverse engineering tools are required to reach source code of Apk application files. In this 

study, “JADX” is used. With the help of it, the conversion from the compiled java file 

“classes.dex” to readable java code has been done. In this way, it is provided to examine the 

java codes, to reach details about application activities and to extract application feature vectors. 

Application java files is scanned using code analysis approach techniques and features such as 

permissions, API call parameters is obtained. Thus, these feature vectors is used for 

classification with KNN 

 

K-nearest Algorithm (KNN) 
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The K-nearest algorithm (KNN) has been proposed by Thomas Cove and is a suggested method 

for classification and regression problems [24]. “k” closest training samples in the feature space 

is used as a input vector in both cases. The output of model will vary depending on whether the 

KNN approach is used for regression of classification. An test example is classified according 

to its closest neighbours and assigned to the class that hosts the closest neighbours. If the k 

value takes as 1, whatever class of its closest neighbour will be assigned to that class. In 

regression, the output will be the average of the next k neighbour’s feature values. It is a type 

of sample-based learning algorithms.  

In the KNN algorithm, the Euclid distance define by the formula (1) is used to calculate the 

distance between the test and input data.  

𝑑(𝑝, 𝑞)  = √(𝑞1 − 𝑝1)2 +  (𝑞2 − 𝑝2)2 + ⋯ +  (𝑞𝑛 − 𝑝𝑛)2            (1) 

                   =  √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

 

In the formula given above, n denotes the number of different features in ML. The data closest 

to the test point is assumed to belong to that class.  

k=3

k=7

Malicious

Benign

f1

f2
 

Figure 1. KNN Algorithm Working Model 

A sample KNN chart is shown in Figure 1. The data market with the red triangle has been 

accepted as test data. Accordingly, it is tried to classify whether the test data is malicious of 

benevolent application. If k value is taken as 3, the 3 samples closest to the test data or k is 

taken as 7, 7 samples closest to the test data are included in the calculation. The distances 

between these input samples and test data are calculated according to the Eq.1. Hereunder, the 

test data is determined as belonging to the class with the smallest distance value. Due to the 

nature of the approach, in some cases the distance values to the two classes can be equal. In this 
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case, calculation are done by adding an extra input data. In the Figure 1, the red test data will 

be taken into the benign class, which is green. 

Apk Structure 

Android applications are in a compressed file format with the extension “apk” (Android 

Application Package). Its structure is as shown in Figure-2. Android manifest file is in XML 

structure. It contains metadata, information about hardware and software features and especially 

the permissions of the application. Manifest.xml file used in static analysis used to detect 

malicious applications. “Classes.dex” contains the compiled application java files. It has an 

executable structure in the Dalvik virtual machine. The res file contains knowledge about the 

graphic and audio definitions, visual drawings and the language used. The “Meta-INF” includes 

certification and verification parameters for security and data integrity. The “Lib” folder is the 

repository of native libraries Recorded files are stored in the “Asset” folder. It is protected with 

the same name in the compiled package during the compilation stage. The “Resources.arsc” is 

a compiled binary file. It contains all application files including libraries.  

 

Figure 2. APK Structure [24] 

Although it has a simple structure than other different application development platforms, there 

are critical information files and folders in the APK architecture that should be considered in 

terms of security. Thus, the files included in the apk package are examined in different malware 

detection approaches such as static and code analysis. Thereby, it is possible to estimate the 

purpose of the Android application and take measures accordingly.  

Performance Measure 

Different metrics are used to measure the performance of malware detection models and to 

determine the accuracy level of these measurements such as precision, recall, f1-measure etc. 

The value of TP (True Positive) is a result that the model predicts correctly the positive class 

and TN (True Negative) is a result where the model anticipate correctly the negative class. 

Whether a negative sample is incorrectly classified as positive is considered to be FP (False 
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Positive), and if a positive sample is classified as negative is considered to be FN (False 

Negative). There values are shown in the confusion matrices.    

The well known performance measure is the Accuracy value (Acc), which indicated the 

accuracy of the classification performance. It is calculated with the formula given in the Eq.2. 

It refers to the ratio of the number of correct recognition of malware and benign application 

examples to the total number of samples.   

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
     (2) 

In addition, the equations of Precision (P) (3), Recall(R) (4) and, the harmonic mean of these 

values, F-measure(F) (5) are given below.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃−𝐹𝑃
 (3) , 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
  (4) 

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2𝑃𝑅

𝑃 + 𝑅
   (5) 

Since the F-measure value expresses the correct classification rates of both malignant and 

benevolent apps, in some cases, it is preferred as a measurement metric instead of Accuracy.  

EXPERIMENT AND RESULTS 

Different approaches have been used in the preparation of malicious and benign software 

datasets to be used for classification with KNN. In the tests of the proposed model, 492 

malicious sample software from Gnome malware dataset is used. Applications that will use in 

training and testing phase is chosen randomly. In the selection of benevolent software, 697 

samples selected from different type of mobile applications such as banking, business, weather, 

travel is used (Figure-3). A very rigorous study was carried out in the selection of mobile apps 

that is scanned on “virustotal” [28] web site. It is aimed to prepare a homogenous dataset. Thus, 

training and testing results is provided to be more accurate.   

One of the advantages of the KNN classifier is that it can achieve results fast and requires less 

process time. So, CPU based tensorflow library and a computer with 2.4GHz processor speed 

have been used to tests. Besides, numpy, pandas, sklearn libraries is used to test our proposed 

model.  
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Benign

Malware

 

Figure 3. The distribution of Malicious and Benign Application in dataset 

In the selection of training and test data, randomly selected datasets is used. Accordingly, test 

is carried out with both 70%-30% and 80%-20% training and test rates. These choices have 

been repeated many times for different experiments, and the results are described in this section. 

Precision, recall and f measure metrics are used for performance evaluation.  

K-nearest neighbourhood (KNN) algorithm is used as classifier that is one of the supervised 

learning algorithms and is successful in solving classification problems. The distance metric is 

set at 5. Euclidean distance is used to calculate the distance of the test data with 5 sample point. 

Minkowski is selected as the distance metric. In total, tests is carried out with 1189 mobile 

applications. In Figure 4, the confusion matrices obtained for both 70%-30% and 80%-20% 

selections are given.  

70% Training – 30% Test 80% Training – 20% Test

Figure 4. Confusion Matrices for two dataset 

Successful classification results is obtained with the proposed model in both tests, and the 

number of FP and FN is very low. For the tests, in which the 70%-30% distribution is used as 

a training-test, 331 of the total 357 applications is correctly classified. The accuracy level is 

91.2%, while the sensitivity and Specifity values are 95.33% and 88.81%, respectively. The 

fact that both sensitivity and specifity values are above a certain level indicated that the model 

is not good in one-way (only malicious detection or benign detection) but it is successful in 
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both cases. In the classification problems, when the number of cluster elements is not evenly 

distributed, just measuring the accuracy level of the model is often an insufficient metric. 

Thence, the performance of proposed model is analysed with precision, recall and f1 measures.  

Precision value is realized as 91.2%. In detecting malicious applications, selecting benevolent 

software as malware can have serious headaches. High value in precision shows that the model 

is successful in FP ranking. Furthermore, 92.7% level has been caught in Recall calculation. It 

shows that it gives good results in detecting malwares. The f1 value, which is a result of 

precision and recall values evaluated together and unbalanced cluster distributions can be 

observed, is 92.4%. Wonderful results is obtained in this metric, where all costs is evaluated.  

Similarly, a high Accuracy rate of 93.7% is reached in the test where 80%-20% training-test 

data were selected. While the specifity increased to 90.72%, the sensitivity ascended to 95.74%. 

Precision, recall and f1 measure values is 90.7%, 93.6% and 92.1% in turn.  

Comparing the test results made with the two data selection methods, increasing the training 

data enables more powerful results in all measurement metrics, especially system classification 

accuracy. This shows that it will be possible to catch higher levels of success can be achieved 

with datasets containing more malicious and benign applications.  

The ROC probability curve of the model is shown in Figure-5. It shows that the capacity of the 

model distinguish between malevolent and benevolent programs. High AUC value indicated 

that the model performance is better. 0.94 AUC is obtained with proposed model. This situation, 

which is very close to 1, supports that the model is prosperous.  

 

Figure 5. ROC Curve of Proposed Model 

The effect of the k value change, which is an important parameter in the KNN algorithm for the 

accuracy level of the model and F1-measurement, is shown in Table 1. According to table, the 

most successful results is obtained when the k value is determined as 5 for that 70%-30% 

training-test distribution. In this situation, Accuracy value is 94.9%, Recall is 93.7%, Precision 

is 95.0% and F-measure is 92.4%.  
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Table 1. Effect of k value change on model recognition performance 

K value Accuracy (%) Recall (%) Precision (%) F-measure (%) 

1 91.0 90.5 86.7 88.6 

2 93.8 88.3 95.3 91.7 

3 93.5 93.4 90.1 91.8 

4 93.2 91.2 91.2 91.2 

5 94.1 91.2 92.7 92.4 

6 93.8 92.7 91.4 92.0 

7 92.9 93.4 88.9 91.1 

8 92.7 92.7 88.8 90.7 

9 93.8 93.4 90.8 92.1 

10 93.1 91.2 93.4 92.3 

In the results showed in Table 1, the recognition performance never fell below 90%. This 

indicates that the proposed model has high recognition rate. Changes in the parameters do not 

effect the results to go below a certain level. However, with the best selection, the best results 

is produced compared to other models. The results have shown the effect of using the KNN 

classifier for malware detection.  

DISCUSSION AND CONCLUSION 

In this study, a model that detects malware for Android mobile devices using K-nearest 

neighbourhood(KNN) classification method is proposed. Nowadays, the use of machine 

learning techniques has become widespread, and many studies have been conducted using the 

KNN model. The paper numbered [29] where KNN model was used, different accuracy levels 

of k value according to the change were obtained. On average, 92.63% correct classication rate 

was catched. In the study prepared by Kedziora et al. [30], tests were carried out with a total of 

1958 application including 996 malicious software. In the classification modeled with KNN, 

performance values varying between 78.3% and 80% were obtained for different metrics. 

Similarly, In the research tested with 10747 sample applications, 81.57% performance rate was 

obtained with the use of KNN [31] and AUC value was 87.36%. In another study, in the 

malware detection tools where KNN algorithm is used as classifer, Hamming, Euclidean and 

Chebyshev algorithms are given comparatively as distance calculation metric. According to 

this, although the results are close to each other, the lowest error rate were achieved with 

Euclidean distance [32]. 
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The protection of mobile devices from malignant activities is an issue that the researchers are 

working on, because of that the use of the Android OS on these devices are increasing day by 

day. In this work, an original dataset is created to distinguish malicious apks files from benign 

ones. A balanced distribution is attempted in the number of benign and malevolent applications 

in this dataset. A feature vector containing permissions and other components is created and 

classified with KNN which is one of the machine learning technique. Although different results 

are attained in this test, the performance level is determined as 94.1%. Compared to other 

similar level studies using KNN, better accuracy rate is achieved. The reason for this is thought 

to be a good model and dataset, and well-chosen parameters. In the to the Accuracy value, 

92.4% is also obtained in the F-measure. It shows that this model can successfully distinguish 

both malware and benign classes.  

In the static and dynamic analysis approached used from the past to the present, it can be quite 

difficult to achieve more thatn 90% success level. However, with machine learning techniques, 

these performance rates can be accessed with smaller datasets. At this point, it is necessary to 

work with larger and more comprehensive databases in order to provide safer mobile device 

usage environments to users, especially decreasing FP rates. Accurate detection levels of 

models trained with more and more applications for malignant and benovolent applications will 

increase rapidly. Moreover, if different classifiers such as J48, Random Forest or ANN are used, 

different results will be possible. If work continues in this area in the future, it will be possible 

for people to use more secure Android mobile devices.  
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